Search Results

Now showing 1 - 2 of 2
  • Item
    A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach
    (Göttingen : Copernicus Publ., 2018) Oppermann, Frank; Günther, Thomas
    We present a new versatile datalogger that can be used for a wide range of possible applications in geosciences. It is adjustable in signal strength and sampling frequency, battery saving and can remotely be controlled over a Global System for Mobile Communication (GSM) connection so that it saves running costs, particularly in monitoring experiments. The internet connection allows for checking functionality, controlling schedules and optimizing pre-amplification. We mainly use it for large-scale electrical resistivity tomography (ERT), where it independently registers voltage time series on three channels, while a square-wave current is injected. For the analysis of this time series we present a new approach that is based on the lock-in (LI) method, mainly known from electronic circuits. The method searches the working point (phase) using three different functions based on a mask signal, and determines the amplitude using a direct current (DC) correlation function. We use synthetic data with different types of noise to compare the new method with existing approaches, i.e. selective stacking and a modified fast Fourier transformation (FFT)-based approach that assumes a 1∕f noise characteristics. All methods give comparable results, but the LI is better than the well-established stacking method. The FFT approach can be even better but only if the noise strictly follows the assumed characteristics. If overshoots are present in the data, which is typical in the field, FFT performs worse even with good data, which is why we conclude that the new LI approach is the most robust solution. This is also proved by a field data set from a long 2-D ERT profile.
  • Item
    Electric resistivity and seismic refraction tomography: a challenging joint underwater survey at Äspö Hard Rock Laboratory
    (Göttingen : Copernicus Publ., 2017) Ronczka, Mathias; Hellman, Kristofer; Günther, Thomas; Wisén, Roger; Dahlin, Torleif
    Tunnelling below water passages is a challenging task in terms of planning, pre-investigation and construction. Fracture zones in the underlying bedrock lead to low rock quality and thus reduced stability. For natural reasons, they tend to be more frequent at water passages. Ground investigations that provide information on the subsurface are necessary prior to the construction phase, but these can be logistically difficult. Geophysics can help close the gaps between local point information by producing subsurface images. An approach that combines seismic refraction tomography and electrical resistivity tomography has been tested at the Äspö Hard Rock Laboratory (HRL). The aim was to detect fracture zones in a well-known but logistically challenging area from a measuring perspective. The presented surveys cover a water passage along part of a tunnel that connects surface facilities with an underground test laboratory. The tunnel is approximately 100 m below and 20 m east of the survey line and gives evidence for one major and several minor fracture zones. The geological and general test site conditions, e.g. with strong power line noise from the nearby nuclear power plant, are challenging for geophysical measurements. Co-located positions for seismic and ERT sensors and source positions are used on the 450 m underwater section of the 700 m profile. Because of a large transition zone that appeared in the ERT result and the missing coverage of the seismic data, fracture zones at the southern and northern parts of the underwater passage cannot be detected by separated inversion. Synthetic studies show that significant three-dimensional (3-D) artefacts occur in the ERT model that even exceed the positioning errors of underwater electrodes. The model coverage is closely connected to the resolution and can be used to display the model uncertainty by introducing thresholds to fade-out regions of medium and low resolution. A structural coupling cooperative inversion approach is able to image the northern fracture zone successfully. In addition, previously unknown sedimentary deposits with a significantly large thickness are detected in the otherwise unusually well-documented geological environment. The results significantly improve the imaging of some geologic features, which would have been undetected or misinterpreted otherwise, and combines the images by means of cluster analysis into a conceptual subsurface model.