Search Results

Now showing 1 - 2 of 2
  • Item
    A remote-control datalogger for large-scale resistivity surveys and robust processing of its signals using a software lock-in approach
    (Göttingen : Copernicus Publ., 2018) Oppermann, Frank; Günther, Thomas
    We present a new versatile datalogger that can be used for a wide range of possible applications in geosciences. It is adjustable in signal strength and sampling frequency, battery saving and can remotely be controlled over a Global System for Mobile Communication (GSM) connection so that it saves running costs, particularly in monitoring experiments. The internet connection allows for checking functionality, controlling schedules and optimizing pre-amplification. We mainly use it for large-scale electrical resistivity tomography (ERT), where it independently registers voltage time series on three channels, while a square-wave current is injected. For the analysis of this time series we present a new approach that is based on the lock-in (LI) method, mainly known from electronic circuits. The method searches the working point (phase) using three different functions based on a mask signal, and determines the amplitude using a direct current (DC) correlation function. We use synthetic data with different types of noise to compare the new method with existing approaches, i.e. selective stacking and a modified fast Fourier transformation (FFT)-based approach that assumes a 1∕f noise characteristics. All methods give comparable results, but the LI is better than the well-established stacking method. The FFT approach can be even better but only if the noise strictly follows the assumed characteristics. If overshoots are present in the data, which is typical in the field, FFT performs worse even with good data, which is why we conclude that the new LI approach is the most robust solution. This is also proved by a field data set from a long 2-D ERT profile.
  • Item
    Structurally coupled cooperative inversion of magnetic resonance with resistivity soundings
    (Tulsa, Okla. : SEG, 2018) Skibbe, Nico; Günther, Thomas; Müller-Petke, Mike
    Hydrologic parameters, such as porosity, salinity, and hydraulic conductivity are keys for understanding the subsurface. Hydrogeophysical investigations can lead to ambiguous results, particularly in the presence of clay and saltwater. A combination of magnetic resonance sounding and vertical electrical sounding is known to provide insight into these properties. Structural coupling increases the model resolution and reduces the ambiguity for both methods. Inversion schemes using block models exist, but they have trouble resolving smooth or complex parameter distributions. We have developed a structurally coupled cooperative inversion (SCCI) that works with smooth parameter distributions and is able to introduce blocky features through the exchange of structural information. The coupling adapts the smoothness constraint locally in connection to the model roughness to allow for sharper model boundaries. We investigate the performance of the SCCI using blocky and smooth synthetic models that depend on two controlling coupling parameters. A well-known field case is used to verify the results with drilling core and well logs. Varying the coupling parameters results in equivalent models covering the bandwidth from smooth to blocky, while providing a similar data fit. The SCCI results are more consistent with the synthetic models. Structural coupling improves the resolution of the single methods and can be used to describe hydrogeophysical targets in more detail and less ambiguously.