Search Results

Now showing 1 - 2 of 2
  • Item
    Design–functionality relationships for adhesion/growth-regulatory galectins
    (Washington, DC : National Acad. of Sciences, 2019) Ludwig, Anna-Kristin; Michalak, Malwina; Xiao, Qi; Gilles, Ulrich; Medrano, Francisco J.; Ma, Hanyue; FitzGerald, Forrest G.; Hasley, William D.; Melendez-Davila, Adriel; Liu, Matthew; Rahimi, Khosrow; Kostina, Nina Yu; Rodriguez-Emmenegger, Cesar; Möller, Martin; Lindner, Ingo; Kaltner, Herbert; Cudic, Mare; Reusch, Dietmar; Kopitz, Jürgen; Romero, Antonio; Oscarson, Stefan; Klein, Michael L.; Gabius, Hans-Joachim; Percec, Virgil
    Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N′-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.
  • Item
    Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes
    (Washington, DC : National Acad. of Sciences, 2018) Xiao, Qi; Ludwig, Anna-Kristin; Romanò, Cecilia; Buzzacchera, Irene; Sherman, Samuel E.; Vetro, Maria; Vértesy, Sabine; Kaltner, Herbert; Reed, Ellen H.; Möller, Martin; Wilson, Christopher J.; Hammer, Daniel A.; Oscarson, Stefan; Klein, Michael L.; Gabius, Hans-Joachim; Percec, Virgil
    Precise translation of glycan-encoded information into cellular activity depends critically on highly specific functional pairing between glycans and their human lectin counter receptors. Sulfoglycolipids, such as sulfatides, are important glycolipid components of the biological membranes found in the nervous and immune systems. The optimal molecular and spatial design aspects of sulfated and nonsulfated glycans with high specificity for lectin-mediated bridging are unknown. To elucidate how different molecular and spatial aspects combine to ensure the high specificity of lectin-mediated bridging, a bottom-up toolbox is devised. To this end, negatively surface-charged glycodendrimersomes (GDSs), of different nanoscale dimensions, containing sulfo-lactose groups are self-assembled in buffer from a synthetic sulfatide mimic: Janus glycodendrimer (JGD) containing a 3′-O-sulfo-lactose headgroup. Also prepared for comparative analysis are GDSs with nonsulfated lactose, a common epitope of human membranes. These self-assembled GDSs are employed in aggregation assays with 15 galectins, comprising disease-related human galectins, and other natural and engineered variants from four families, having homodimeric, heterodimeric, and chimera architectures. There are pronounced differences in aggregation capacity between human homodimeric and heterodimeric galectins, and also with respect to their responsiveness to the charge of carbohydrate-derived ligand. Assays reveal strong differential impact of ligand surface charge and density, as well as lectin concentration and structure, on the extent of surface cross-linking. These findings demonstrate how synthetic JGD-headgroup tailoring teamed with protein engineering and network assays can help explain how molecular matchmaking operates in the cellular context of glycan and lectin complexity.