Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit

2021, Weng, Qunhong, Wang, Sitao, Liu, Lixiang, Lu, Xueyi, Zhu, Minshen, Li, Yang, Gabler, Felix, Schmidt, Oliver G.

Independent and well-packaged miniaturized energy storage devices (MESDs) are indispensable as power sources or backup units for integrated circuits and many dispersive electronics applications. Challenges associated with MESD development relate to their low packaged areal energy density and poor battery performance. Here, we propose a compact tube-in-tube battery configuration to overcome the areal energy density and packaging problems in microbatteries. Compact microtubular microelectrodes rolled up from patterned nanomembranes are sealed in an inert glass capillary with a thin tube wall. The resultant tube-in-tube microsized lithium-ion batteries (micro-LIBs), based on various active materials, exhibit very high and scalable packaged areal energy densities up to 605 microampere hours per square centimeter (μAh cm−2) or 313 μWh cm−2 with footprints as small as 0.39–0.79 mm2. This approach is a practical alternative for microbattery microelectrode, packaging, and configuration innovations.

Loading...
Thumbnail Image
Item

Wafer-Scale High-Quality Microtubular Devices Fabricated via Dry-Etching for Optical and Microelectronic Applications

2020, Saggau, Christian N., Gabler, Felix, Karnaushenko, Dmitriy D., Karnaushenko, Daniil, Ma, Libo, Schmidt, Oliver G.

Mechanical strain formed at the interfaces of thin films has been widely applied to self-assemble 3D microarchitectures. Among them, rolled-up microtubes possess a unique 3D geometry beneficial for working as photonic, electromagnetic, energy storage, and sensing devices. However, the yield and quality of microtubular architectures are often limited by the wet-release of lithographically patterned stacks of thin-film structures. To address the drawbacks of conventionally used wet-etching methods in self-assembly techniques, here a dry-release approach is developed to roll-up both metallic and dielectric, as well as metallic/dielectric hybrid thin films for the fabrication of electronic and optical devices. A silicon thin film sacrificial layer on insulator is etched by dry fluorine chemistry, triggering self-assembly of prestrained nanomembranes in a well-controlled wafer scale fashion. More than 6000 integrated microcapacitors as well as hundreds of active microtubular optical cavities are obtained in a simultaneous self-assembly process. The fabrication of wafer-scale self-assembled microdevices results in high yield, reproducibility, uniformity, and performance, which promise broad applications in microelectronics, photonics, and opto-electronics. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Stress‐Actuated Spiral Microelectrode for High‐Performance Lithium‐Ion Microbatteries

2020, Tang, Hongmei, Karnaushenko, Dmitriy D., Neu, Volker, Gabler, Felix, Wang, Sitao, Liu, Lixiang, Li, Yang, Wang, Jiawei, Zhu, Minshen, Schmidt, Oliver G.

Miniaturization of batteries lags behind the success of modern electronic devices. Neither the device volume nor the energy density of microbatteries meets the requirement of microscale electronic devices. The main limitation for pushing the energy density of microbatteries arises from the low mass loading of active materials. However, merely pushing the mass loading through increased electrode thickness is accompanied by the long charge transfer pathway and inferior mechanical properties for long‐term operation. Here, a new spiral microelectrode upon stress‐actuation accomplishes high mass loading but short charge transfer pathways. At a small footprint area of around 1 mm2, a 21‐fold increase of the mass loading is achieved while featuring fast charge transfer at the nanoscale. The spiral microelectrode delivers a maximum area capacity of 1053 µAh cm−2 with a retention of 67% over 50 cycles. Moreover, the energy density of the cylinder microbattery using the spiral microelectrode as the anode reaches 12.6 mWh cm−3 at an ultrasmall volume of 3 mm3. In terms of the device volume and energy density, the cylinder microbattery outperforms most of the current microbattery technologies, and hence provides a new strategy to develop high‐performance microbatteries that can be integrated with miniaturized electronic devices.