Search Results

Now showing 1 - 3 of 3
  • Item
    In Vitro Examinations of Cell Death Induction and the Immune Phenotype of Cancer Cells Following Radiative-Based Hyperthermia with 915 MHz in Combination with Radiotherapy
    (Basel : MDPI, 2021) Hader, Michael; Streit, Simon; Rosin, Andreas; Gerdes, Thorsten; Wadepohl, Martin; Bekeschus, Sander; Fietkau, Rainer; Frey, Benjamin; Schlücker, Eberhard; Gekle, Stephan; Gaipl, Udo S.
    Multimodal tumor treatment settings consisting of radiotherapy and immunomodulating agents such as immune checkpoint inhibitors are more and more commonly applied in clinics. In this context, the immune phenotype of tumor cells has a major influence on the anti-tumor immune response as well as the composition of the tumor microenvironment. A promising approach to further boost anti-tumor immune responses is to add hyperthermia (HT), i.e., heating the tumor tissue between 39 °C to 45 °C for 60 min. One key technique is the use of radiative hyperthermia systems. However, knowledge is limited as to how the frequency of the used radiative systems affects the immune phenotype of the treated tumor cells. By using our self-designed in vitro hyperthermia system, we compared cell death induction and expression of immune checkpoint molecules (ICM) on the tumor cell surface of murine B16 melanoma and human MDA-MB-231 and MCF-7 breast cancer cells following HT treatment with clinically relevant microwaves at 915 MHz or 2.45 GHz alone, radiotherapy (RT; 2 × 5 Gy or 5 × 2 Gy) alone or in combination (RHT). At 44 °C, HT alone was the dominant cell death inductor with inactivation rates of around 70% for B16, 45% for MDA-MB-231 and 35% for MCF-7 at 915 MHz and 80%, 60% and 50% at 2.45 GHz, respectively. Additional RT resulted in 5-15% higher levels of dead cells. The expression of ICM on tumor cells showed time-, treatment-, cell line- and frequency-dependent effects and was highest for RHT. Computer simulations of an exemplary spherical cell revealed frequency-dependent local energy absorption. The frequency of hyperthermia systems is a newly identified parameter that could also affect the immune phenotype of tumor cells and consequently the immunogenicity of tumors.
  • Item
    Differences of the immune phenotype of breast cancer cells after ex vivo hyperthermia by warm-water or microwave radiation in a closed-loop system alone or in combination with radiotherapy
    (Basel : MDPI AG, 2020) Hader, Michael; Savcigil, Deniz Pinar; Rosin, Andreas; Ponfick, Philipp; Gekle, Stephan; Wadepohl, Martin; Bekeschus, Sander; Fietkau, Rainer; Frey, Benjamin; Schlücker, Eberhard; Gaipl, Udo S.
    The treatment of breast cancer by radiotherapy can be complemented by hyperthermia. Little is known about how the immune phenotype of tumor cells is changed thereby, also in terms of a dependence on the heating method. We developed a sterile closed-loop system, using either a warm-water bath or a microwave at 2.45 GHz to examine the impact of ex vivo hyperthermia on cell death, the release of HSP70, and the expression of immune checkpoint molecules (ICMs) on MCF-7 and MDA-MB-231 breast cancer cells by multicolor flow cytometry and ELISA. Heating was performed between 39 and 44◦C. Numerical process simulations identified temperature distributions. Additionally, irradiation with 2 × 5 Gy or 5 × 2 Gy was applied. We observed a release of HSP70 after hyperthermia at all examined temperatures and independently of the heating method, but microwave heating was more effective in cell killing, and microwave heating with and without radiotherapy increased subsequent HSP70 concentrations. Adding hyperthermia to radiotherapy, dynamically or individually, affected the expression of the ICM PD-L1, PD-L2, HVEM, ICOS-L, CD137-L, OX40-L, CD27-L, and EGFR on breast cancer cells. Well-characterized pre-clinical heating systems are mandatory to screen the immune phenotype of tumor cells in clinically relevant settings to define immune matrices for therapy adaption. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo
    (Abingdon : Taylor & Franics, 2021) Mahdikia, Hamed; Saadati, Fariba; Freund, Eric; Gaipl, Udo S.; Majidzadeh-A, Keivan; Shokri, Babak; Bekeschus, Sander
    While many new and emerging therapeutic concepts have appeared throughout the last decades, cancer still is fatal in many patients. At the same time, the importance of immunology in oncotherapy is increasingly recognized, not only since the advent of checkpoint therapy. Among the many types of tumors, also breast cancer has an immunological dimension that might be exploited best by increasing the immunogenicity of the tumors in the microenvironment. To this end, we tested a novel therapeutic concept, gas plasma irradiation, for its ability to promote the immunogenicity and increase the toxicity of breast cancer cells in vitro and in vivo. Mechanistically, this emerging medical technology is employing a plethora of reactive oxygen species being deposited on the target cells and tissues. Using 2D cultures and 3D tumor spheroids, we found gas plasma-irradiation to drive apoptosis and immunogenic cancer cell death (ICD) in vitro, as evidenced by an increased expression of calreticulin, heat-shock proteins 70 and 90, and MHC-I. In 4T1 breast cancer-bearing mice, the gas plasma irradiation markedly decreased tumor burden and increased survival. Interestingly, non-treated tumors injected in the opposite flank of mice exposed to our novel treatment also exhibited reduced growth, arguing for an abscopal effect. This was concomitant with an increase of apoptosis and tumor-infiltrating CD4+ and CD8+ T-cells as well as dendritic cells in the tissues. In summary, we found gas plasma-irradiated murine breast cancers to induce toxicity and augmented immunogenicity, leading to reduced tumor growth at a site remote to the treatment area.