Search Results

Now showing 1 - 2 of 2
  • Item
    Evolution of planar defects during homoepitaxial growth of β-Ga2O3 layers on (100) substrates—A quantitative model
    (Melville, NY : American Inst. of Physics, 2016) Schewski, R.; Baldini, M.; Irmscher, K.; Fiedler, A.; Markurt, T.; Neuschulz, B.; Remmele, T.; Schulz, T.; Wagner, G.; Galazka, Z.; Albrecht, M.
    We study the homoepitaxial growth of β-Ga2O3 (100) grown by metal-organic vapour phase as dependent on miscut-angle vs. the c direction. Atomic force microscopy of layers grown on substrates with miscut-angles smaller than 2° reveals the growth proceeding through nucleation and growth of two-dimensional islands. With increasing miscut-angle, step meandering and finally step flow growth take place. While step-flow growth results in layers with high crystalline perfection, independent nucleation of two-dimensional islands causes double positioning on the (100) plane, resulting in twin lamellae and stacking mismatch boundaries. Applying nucleation theory in the mean field approach for vicinal surfaces, we can fit experimentally found values for the density of twin lamellae in epitaxial layers as dependent on the miscut-angle. The model yields a diffusion coefficient for Ga adatoms of D = 7 × 10−9 cm2 s−1 at a growth temperature of 850 °C, two orders of magnitude lower than the values published for GaAs.
  • Item
    Experimental electronic structure of In2O3 and Ga2O3
    (Bristol : IOP, 2011) Janowitz, C.; Scherer, V.; Mohamed, M.; Krapf, A.; Dwelk, H.; Manzke, R.; Galazka, Z.; Uecker, R.; Irmscher, K.; Fornari, R.; Michling, M.; Schmeißer, D.; Weber, J.R.; Varley, J.B.; Van De Walle, C.G.
    Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.