Search Results

Now showing 1 - 2 of 2
  • Item
    Cobalt as a promising dopant for producing semi-insulating β -Ga2O3crystals: Charge state transition levels from experiment and theory
    (Melville, NY : AIP Publ., 2022) Seyidov, Palvan; Varley, Joel B.; Galazka, Zbigniew; Chou, Ta-Shun; Popp, Andreas; Fiedler, Andreas; Irmscher, Klaus
    Optical absorption and photoconductivity measurements of Co-doped β-Ga2O3 crystals reveal the photon energies of optically excited charge transfer between the Co related deep levels and the conduction or valence band. The corresponding photoionization cross sections are fitted by a phenomenological model considering electron-phonon coupling. The obtained fitting parameters: thermal ionization (zero-phonon transition) energy, Franck-Condon shift, and effective phonon energy are compared with corresponding values predicted by first principle calculations based on density functional theory. A (+/0) donor level ∼0.85 eV above the valence band maximum and a (0/-) acceptor level ∼2.1 eV below the conduction band minimum are consistently derived. Temperature-dependent electrical resistivity measurement at elevated temperatures (up to 1000 K) yields a thermal activation energy of 2.1 ± 0.1 eV, consistent with the position of the Co acceptor level. Furthermore, the results show that Co doping is promising for producing semi-insulating β-Ga2O3 crystals.
  • Item
    Effect of post-metallization anneal on (100) Ga2O3/Ti–Au ohmic contact performance and interfacial degradation
    (Melville, NY : AIP Publ., 2022) Lee, Ming-Hsun; Chou, Ta-Shun; Bin Anooz, Saud; Galazka, Zbigniew; Popp, Andreas; Peterson, Rebecca L.
    Here, we investigate the effect of post-metallization anneal temperature on Ti/Au ohmic contact performance for (100)-oriented Ga2O3. A low contact resistance of ∼2.49 × 10−5 Ω·cm2 is achieved at an optimal anneal temperature of ∼420 °C for (100) Ga2O3. This is lower than the widely-used temperature of 470 °C for (010)-oriented Ga2O3. However, drastic degradation of the (100)-oriented contact resistance to ∼1.36 × 10−3 Ω·cm2 is observed when the anneal temperature was increased to 520 °C. Microscopy at the degraded ohmic contact revealed that the reacted Ti–TiOx interfacial layer has greatly expanded to 25–30 nm thickness and GaAu2 inclusions have formed between (310)-Ga2O3 planes and the Ti–TiOx layer. This degraded interface, which corresponds to the deterioration of ohmic contact properties, likely results from excess in-diffusion of Au and out-diffusion of Ga, concurrent with the expansion of the Ti–TiOx layer. These results demonstrate the critical influence of Ga2O3 anisotropy on the optimal post-metallization anneal temperature. Moreover, the observed Ti/Au contact degradation occurs for relatively moderate anneal conditions (520 °C for 1 min in N2), pointing to the urgent necessity of developing alternative metallization schemes for gallium oxide, including the use of Au-free electrodes