Search Results

Now showing 1 - 2 of 2
  • Item
    Dye-Loaded Mechanochromic and pH-Responsive Elastomeric Opal Films
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Boehm, Anna; Presser, Volker; Gallei, Markus
    In this work, the preparation and fabrication of elastomeric opal films revealing reversible mechanochromic and pH-responsive features are reported. The core–interlayer–shell (CIS) particles are synthesized via stepwise emulsion polymerization leading to hard core (polystyrene), crosslinked interlayer (poly(methyl methacrylate-co-allyl methacrylate), and soft poly(ethyl acrylate-co-butyl acrylate-co-(2-hydroxyethyl) methacrylate) shell particles featuring a size of 294.9 ± 14.8 nm. This particle architecture enables the application of the melt-shear organization technique leading to elastomeric opal films with orange, respectively, green brilliant reflection colors dependent on the angle of view. Moreover, the hydroxyl moieties as part of the particle shell are advantageously used for subsequent thermally induced crosslinking reactions enabling the preparation of reversibly tunable mechanochromic structural colors based on Bragg's law of diffraction. Additionally, the CIS particles can be loaded upon extrusion or chemically by a postfunctionalization strategy with organic dyes implying pH-responsive features. This convenient protocol for preparing multi-responsive, reversibly stretch-tunable opal films is expected to enable a new material family for anti-counterfeiting applications based on external triggers.
  • Item
    Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Haider, Wasim; Schießer, Alexander; Presser, Volker; Gallei, Markus; Schäfer, André
    The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol–1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented