Search Results

Now showing 1 - 6 of 6
  • Item
    Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies
    (Weinheim : Wiley-VCH, 2021) Frieß, Florian V.; Hu, Qiwei; Mayer, Jannik; Gemmer, Lea; Presser, Volker; Balzer, Bizan N.; Gallei, Markus
    In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.
  • Item
    Mechanically Stable, Binder‐Free, and Free‐Standing Vanadium Trioxide/Carbon Hybrid Fiber Electrodes for Lithium‐Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Bornamehr, Behnoosh; Gallei, Markus; Husmann, Samantha; Presser, Volker
    Binder is a crucial component in present-day battery electrodes but commonly contains fluorine and requires coating processing using organic (often toxic) solvents. Preparing binder-free electrodes is an attractive strategy to make battery electrode production and its end-of-use waste greener and safer. Herein, electrospinning is employed to prepare binder-free and self-standing electrodes. Such electrodes often suffer from low flexibility, and the correlation between performance and flexibility is usually overlooked. Processing parameters affect the mechanical properties of the electrodes, and for the first time it is reported that mechanical flexibility directly influences the electrochemical performance of the electrode. The importance is highlighted when processing parameters advantageous to powder materials, such as a higher heat treatment temperature, harm self-standing electrodes due to deterioration of fiber flexibility. Other strategies, such as conductive carbon addition, can be employed to improve the cell performance, but their effect on the mechanical properties of the electrodes must be considered. Rapid heat treatment achieves self-standing V2O3 with a capacity of 250 mAh g−1 at 250 mA g−1 and 390 mAh g−1 at 10 mA g−1
  • Item
    Rings and Chains: Synthesis and Characterization of Polyferrocenylmethylene
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Haider, Wasim; Schießer, Alexander; Presser, Volker; Gallei, Markus; Schäfer, André
    The synthesis and characterization of polyferrocenylmethylene (PFM) starting from dilithium 2,2-bis(cyclopentadienide)propane and a Me2C[1]magnesocenophane is reported. Molecular weights of up to Mw = 11 700 g mol–1 featuring a dispersity, Ð, of 1.40 can be achieved. The material is studied by different methods comprising nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time of flight (MALDI-ToF) mass spectrometry, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) measurements elucidating the molecular structure and thermal properties of these novel polymers. Moreover, cyclic voltammetry (CV) reveals quasi-reversible oxidation and reduction behavior and communication between the iron centers. Also, the crystal structure of a related cyclic hexamer is presented
  • Item
    Dye-Loaded Mechanochromic and pH-Responsive Elastomeric Opal Films
    (Weinheim : Wiley-VCH, 2021) Winter, Tamara; Boehm, Anna; Presser, Volker; Gallei, Markus
    In this work, the preparation and fabrication of elastomeric opal films revealing reversible mechanochromic and pH-responsive features are reported. The core–interlayer–shell (CIS) particles are synthesized via stepwise emulsion polymerization leading to hard core (polystyrene), crosslinked interlayer (poly(methyl methacrylate-co-allyl methacrylate), and soft poly(ethyl acrylate-co-butyl acrylate-co-(2-hydroxyethyl) methacrylate) shell particles featuring a size of 294.9 ± 14.8 nm. This particle architecture enables the application of the melt-shear organization technique leading to elastomeric opal films with orange, respectively, green brilliant reflection colors dependent on the angle of view. Moreover, the hydroxyl moieties as part of the particle shell are advantageously used for subsequent thermally induced crosslinking reactions enabling the preparation of reversibly tunable mechanochromic structural colors based on Bragg's law of diffraction. Additionally, the CIS particles can be loaded upon extrusion or chemically by a postfunctionalization strategy with organic dyes implying pH-responsive features. This convenient protocol for preparing multi-responsive, reversibly stretch-tunable opal films is expected to enable a new material family for anti-counterfeiting applications based on external triggers.
  • Item
    Selective Pb2+ removal and electrochemical regeneration of fresh and recycled FeOOH
    ([Erscheinungsort nicht ermittelbar] : Tsinghua Press, 2023) Wang, Lei; Deligniere, Lexane; Husmann, Samantha; Leiner, Regina; Bahr, Carsten; Zhang, Shengjie; Dun, Chaochao; Montemore, Matthew M.; Gallei, Markus; Urban, Jeffrey J.; Kim, Choonsoo; Presser, Volker
    Heavy metal pollution is a key environmental problem. Selectively extracting heavy metals could accomplish water purification and resource recycling simultaneously. Adsorption is a promising approach with a facile process, adaptability for the broad concentration of feed water, and high selectivity. However, the adsorption method faces challenges in synthesizing high-performance sorbents and regenerating adsorbents effectively. FeOOH is an environmentally friendly sorbent with low-cost production on a large scale. Nevertheless, the selectivity behavior and regeneration of FeOOH are seldom studied. Therefore, we investigated the selectivity of FeOOH in a mixed solution of Co2+, Ni2+, and Pb2+ and proposed to enhance the capacity of FeOOH and regenerate it by using external charges. Without charge, the FeOOH electrode shows a Pb2+ uptake capacity of 20 mg/g. After applying a voltage of −0.2/+0.8 V, the uptake capacity increases to a maximum of 42 mg/g and the desorption ratio is 70%–80%. In 35 cycles, FeOOH shows a superior selectivity towards Pb2+ compared with Co2+ and Ni2+, with a purity of 97% ± 3% in the extracts. The high selectivity is attributed to the lower activation energy for Pb2+ sorption. The capacity retentions at the 5th and the 35th cycles are ca. 80% and ca. 50%, respectively, comparable to the chemical regeneration method. With industrially exhausted granular ferric hydroxide as the electrode material, the system exhibits a Pb2+ uptake capacity of 37.4 mg/g with high selectivity. Our work demonstrates the feasibility of regenerating FeOOH by charge and provides a new approach for recycling and upcycling FeOOH sorbent. [Figure not available: see fulltext.]
  • Item
    Thermo-Responsive Ultrafiltration Block Copolymer Membranes Based on Polystyrene-block-poly(diethyl acrylamide)
    (Weinheim : Wiley-VCH GmbH, 2023) Frieß, Florian V.; Hartmann, Frank; Gemmer, Lea; Pieschel, Jens; Niebuur, Bart‐Jan; Faust, Matthias; Kraus, Tobias; Presser, Volker; Gallei, Markus
    Within the present work, a thermo-responsive ultrafiltration membrane is manufactured based on a polystyrene-block-poly(diethyl acrylamide) block copolymer (BCP). The poly(diethyl acrylamide) block segment features a lower critical solution temperature (LCST) in water, similar to the well-known poly(N-isopropylacrylamide), but having increased biocompatibility and without exhibiting a hysteresis of the thermally induced switching behavior. The BCP is synthesized via sequential “living” anionic polymerization protocols and analyzed by 1H-NMR spectroscopy, size exclusion chromatography, and differential scanning calorimetry. The resulting morphology in the bulk state is investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealing the intended hexagonal cylindrical morphology. The BCPs form micelles in a binary mixture of tetrahydrofuran and dimethylformamide, where BCP composition and solvent affinities are discussed in light of the expected structure of these micelles and the resulting BCP membrane formation. The membranes are manufactured using the non-solvent induced phase separation (NIPS) process and are characterized via scanning electron microscopy (SEM) and water permeation measurements. The latter are carried out at room temperature and at 50 °C revealing up to a 23-fold increase of the permeance, when crossing the LCST of the poly(diethyl acrylamide) block segment in water.