Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State

2022, Hübner, Hanna, Niebuur, Bart‐Jan, Janka, Oliver, Gemmer, Lea, Koch, Marcus, Kraus, Tobias, Kickelbick, Guido, Stühn, Bernd, Gallei, Markus

Block copolymers (BCPs) in the bulk state are known to self-assemble into different morphologies depending on their polymer segment ratio. For polymers with amorphous and crystalline BCP segments, the crystallization process can be influenced significantly by the corresponding bulk morphology. Herein, the synthesis of the amorphous-crystalline BCP poly(dimethyl silacyclobutane)-block-poly(2vinyl pyridine), (PDMSB-b-P2VP), by living anionic polymerization is reported. Polymers with overall molar masses ranging from 17 400 g to 592 200 g mol−1 and PDMSB contents of 4.8–83.9 vol% are synthesized and characterized by size-exclusion chromatography and NMR spectroscopy. The bulk morphology of the obtained polymers is investigated by means of transmission electron microscopy and small angle X-ray scattering, revealing a plethora of self-assembled structures, providing confined and nonconfined conditions. Subsequently, the influence of the previously determined morphologies and their resulting confinement on the crystallinity and crystallization behavior of PDMSB is analyzed via differential scanning calorimetry and powder X-ray diffraction. Here, fractionated crystallization and supercooling effects are observable as well as different diffraction patterns of the PDMSB crystallites for confined and nonconfined domains.

Loading...
Thumbnail Image
Item

Nanoporous Block Copolymer Membranes with Enhanced Solvent Resistance Via UV-Mediated Cross-Linking Strategies

2021, Frieß, Florian V., Hu, Qiwei, Mayer, Jannik, Gemmer, Lea, Presser, Volker, Balzer, Bizan N., Gallei, Markus

In this work, a block copolymer (BCP) consisting of poly((butyl methacrylate-co-benzophenone methacrylate-co-methyl methacrylate)-block-(2-hydroxyethyl methacrylate)) (P(BMA-co-BPMA-co-MMA)-b-P(HEMA)) is prepared by a two-step atom-transfer radical polymerization (ATRP) procedure. BCP membranes are fabricated applying the self-assembly and nonsolvent induced phase separation (SNIPS) process from a ternary solvent mixture of tetrahydrofuran (THF), 1,4-dioxane, and dimethylformamide (DMF). The presence of a porous top layer of the integral asymmetric membrane featuring pores of about 30 nm is confirmed via scanning electron microscopy (SEM). UV-mediated cross-linking protocols for the nanoporous membrane are adjusted to maintain the open and isoporous top layer. The swelling capability of the noncross-linked and cross-linked BCP membranes is investigated in water, water/ethanol mixture (1:1), and pure ethanol using atomic force microscopy, proving a stabilizing effect of the UV cross-linking on the porous structures. Finally, the influence of the herein described cross-linking protocols on water-flux measurements for the obtained membranes is explored. As a result, an increased swelling resistance for all tested solvents is found, leading to an increased water flux compared to the pristine membrane. The herein established UV-mediated cross-linking protocol is expected to pave the way to a new generation of porous and stabilized membranes within the fields of separation technologies.

Loading...
Thumbnail Image
Item

Bifunctional Carbanionic Synthesis of Fully Bio-Based Triblock Structures Derived from β-Farnesene and ll-Dilactide: Thermoplastic Elastomers

2023, Meier‐Merziger, Moritz, Imschweiler, Jan, Hartmann, Frank, Niebuur, Bart‐Jan, Kraus, Tobias, Gallei, Markus, Frey, Holger

Current environmental challenges and the shrinking fossil-fuel feedstock are important criteria for the next generation of polymer materials. In this context, we present a fully bio-based material, which shows promise as a thermoplastic elastomer (TPE). Due to the use of β-farnesene and L-lactide as monomers, bio-based feedstocks, namely sugar cane and corn, can be used. A bifunctional initiator for the carbanionic polymerization was employed, to permit an efficient synthesis of ABA-type block structures. In addition, the “green” solvent MTBE (methyl tert-butyl ether) was used for the anionic polymerisation, enabling excellent solubility of the bifunctional anionic initiator. This afforded low dispersity (Đ=1.07 to 1.10) and telechelic polyfarnesene macroinitiators. These were employed for lactide polymerization to obtain H-shaped triblock copolymers. TEM and SAXS revealed clearly phase-separated morphologies, and tensile tests demonstrated elastic mechanical properties. The materials featured two glass transition temperatures, at - 66 °C and 51 °C as well as gyroid or cylindrical morphologies, resulting in soft elastic materials at room temperature.

Loading...
Thumbnail Image
Item

Thermo-Responsive Ultrafiltration Block Copolymer Membranes Based on Polystyrene-block-poly(diethyl acrylamide)

2023, Frieß, Florian V., Hartmann, Frank, Gemmer, Lea, Pieschel, Jens, Niebuur, Bart‐Jan, Faust, Matthias, Kraus, Tobias, Presser, Volker, Gallei, Markus

Within the present work, a thermo-responsive ultrafiltration membrane is manufactured based on a polystyrene-block-poly(diethyl acrylamide) block copolymer (BCP). The poly(diethyl acrylamide) block segment features a lower critical solution temperature (LCST) in water, similar to the well-known poly(N-isopropylacrylamide), but having increased biocompatibility and without exhibiting a hysteresis of the thermally induced switching behavior. The BCP is synthesized via sequential “living” anionic polymerization protocols and analyzed by 1H-NMR spectroscopy, size exclusion chromatography, and differential scanning calorimetry. The resulting morphology in the bulk state is investigated by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) revealing the intended hexagonal cylindrical morphology. The BCPs form micelles in a binary mixture of tetrahydrofuran and dimethylformamide, where BCP composition and solvent affinities are discussed in light of the expected structure of these micelles and the resulting BCP membrane formation. The membranes are manufactured using the non-solvent induced phase separation (NIPS) process and are characterized via scanning electron microscopy (SEM) and water permeation measurements. The latter are carried out at room temperature and at 50 °C revealing up to a 23-fold increase of the permeance, when crossing the LCST of the poly(diethyl acrylamide) block segment in water.

Loading...
Thumbnail Image
Item

Single-Polymer Friction Force Microscopy of dsDNA Interacting with a Nanoporous Membrane

2023, Schellnhuber, Kordula, Blass, Johanna, Hübner, Hanna, Gallei, Markus, Bennewitz, Roland

Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene-block-poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment. We present results for the velocity dependence of detachment forces and of attachment frequency and discuss them in terms of rare excursions of the polymer beyond its equilibrium configuration.

Loading...
Thumbnail Image
Item

Polyacrylonitrile-containing amphiphilic block copolymers: self-assembly and porous membrane formation

2023, Gemmer, Lea, Niebuur, Bart-Jan, Dietz, Christian, Rauber, Daniel, Plank, Martina, Frieß, Florian V., Presser, Volker, Stark, Robert W., Kraus, Tobias, Gallei, Markus

The development of hierarchically porous block copolymer (BCP) membranes via the application of the self-assembly and non-solvent induced phase separation (SNIPS) process is one important achievement in BCP science in the last decades. In this work, we present the synthesis of polyacrylonitrile-containing amphiphilic BCPs and their unique microphase separation capability, as well as their applicability for the SNIPS process leading to isoporous integral asymmetric membranes. Poly(styrene-co-acrylonitrile)-b-poly(2-hydroxyethyl methacrylate)s (PSAN-b-PHEMA) are synthesized via a two-step atom transfer radical polymerization (ATRP) procedure rendering PSAN copolymers and BCPs with overall molar masses of up to 82 kDa while maintaining low dispersity index values in the range of Đ = 1.13-1.25. The polymers are characterized using size-exclusion chromatography (SEC) and NMR spectroscopy. Self-assembly capabilities in the bulk state are examined using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) measurements. The fabrication of isoporous integral asymmetric membranes is investigated, and membranes are examined by scanning electron microscopy (SEM). The introduction of acrylonitrile moieties within the membrane matrix could improve the membranes’ mechanical properties, which was confirmed by nanomechanical analysis using atomic force microscopy (AFM).

Loading...
Thumbnail Image
Item

Selective Pb2+ removal and electrochemical regeneration of fresh and recycled FeOOH

2023, Wang, Lei, Deligniere, Lexane, Husmann, Samantha, Leiner, Regina, Bahr, Carsten, Zhang, Shengjie, Dun, Chaochao, Montemore, Matthew M., Gallei, Markus, Urban, Jeffrey J., Kim, Choonsoo, Presser, Volker

Heavy metal pollution is a key environmental problem. Selectively extracting heavy metals could accomplish water purification and resource recycling simultaneously. Adsorption is a promising approach with a facile process, adaptability for the broad concentration of feed water, and high selectivity. However, the adsorption method faces challenges in synthesizing high-performance sorbents and regenerating adsorbents effectively. FeOOH is an environmentally friendly sorbent with low-cost production on a large scale. Nevertheless, the selectivity behavior and regeneration of FeOOH are seldom studied. Therefore, we investigated the selectivity of FeOOH in a mixed solution of Co2+, Ni2+, and Pb2+ and proposed to enhance the capacity of FeOOH and regenerate it by using external charges. Without charge, the FeOOH electrode shows a Pb2+ uptake capacity of 20 mg/g. After applying a voltage of −0.2/+0.8 V, the uptake capacity increases to a maximum of 42 mg/g and the desorption ratio is 70%–80%. In 35 cycles, FeOOH shows a superior selectivity towards Pb2+ compared with Co2+ and Ni2+, with a purity of 97% ± 3% in the extracts. The high selectivity is attributed to the lower activation energy for Pb2+ sorption. The capacity retentions at the 5th and the 35th cycles are ca. 80% and ca. 50%, respectively, comparable to the chemical regeneration method. With industrially exhausted granular ferric hydroxide as the electrode material, the system exhibits a Pb2+ uptake capacity of 37.4 mg/g with high selectivity. Our work demonstrates the feasibility of regenerating FeOOH by charge and provides a new approach for recycling and upcycling FeOOH sorbent. [Figure not available: see fulltext.]

Loading...
Thumbnail Image
Item

A block copolymer templated approach for the preparation of nanoporous polymer structures and cellulose fiber hybrids by ozone treatment

2022, Gemmer, Lea, Hu, Qiwei, Niebuur, Bart-Jan, Kraus, Tobias, Balzer, Bizan N., Gallei, Markus

Functional amphiphilic block copolymers (BCPs) are versatile, smart, and promising materials that are often used as soft templates in nanoscience. BCPs generally feature the capability of microphase-separation leading to various interesting morphologies at the nanometer length scale. Materials derived from BCPs can be converted into porous structures while retaining the underlying morphology of the matrix material. Here, a convenient and scalable approach for the fabrication of porous functional polyvinylpyridines (P2VP) is introduced. The BCP polyisoprene-block-P2VP (PI-b-P2VP) is obtained via sequential anionic polymerization of the respective monomers and used to form either BCP films in the bulk state or a soft template in a composite with cellulose fibers. Cross-linking of the BCPs with 1,4-diiodobutane is conducted and subsequently PI domains are selectively degraded inside the materials using ozone, while preserving the porous and tailor-made P2VP nanostructure. Insights into the feasibility of the herein presented strategy is supported by various polymer characterization methods comprising nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). The resulting bulk- and composite materials are investigated regarding their morphology and pore formation by scanning electron microscopy (SEM), atomic force microscopy (AFM) and small-angle X-ray scattering (SAXS). Furthermore, chemical conversions were examined by energy dispersive X-ray spectroscopy (EDS), attenuated total reflection Fourier-transformation infrared spectroscopy (ATR-FTIR) and water contact angle (WCA) measurements. By this convenient strategy the fabrication of functional porous P2VP in the bulk state and also within sustainable cellulose composite materials is shown, paving the synthetic strategy for the generation of a new family of stimuli-responsive sustainable materials.