Search Results

Now showing 1 - 3 of 3
  • Item
    Vertical processes and resolution impact ice shelf basal melting: A multi-model study
    (Amsterdam [u.a.] : Elsevier Science, 2020) Gwyther, David E.; Kusahara, Kazuya; Asay-Davis, Xylar S.; Dinniman, Michael S.; Galton-Fenzi, Benjamin K.
    Understanding ice shelf–ocean interaction is fundamental to projecting the Antarctic ice sheet response to a warming climate. Numerical ice shelf–ocean models are a powerful tool for simulating this interaction, yet are limited by inherent model weaknesses and scarce observations, leading to parameterisations that are unverified and unvalidated below ice shelves. We explore how different models simulate ice shelf–ocean interaction using the 2nd Ice Shelf–Ocean Model Intercomparison Project (ISOMIP+) framework. Vertical discretisation and resolution of the ocean model are shown to have a significant effect on ice shelf basal melt rate, through differences in the distribution of meltwater fluxes and the calculation of thermal driving. Z-coordinate models, which generally have coarser vertical resolution in ice shelf cavities, may simulate higher melt rates compared to terrain-following coordinate models. This is due to the typically higher resolution of the ice–ocean boundary layer region in terrain following models, which allows better representation of a thin meltwater layer, increased stratification, and as a result, better insulation of the ice from water below. We show that a terrain-following model, a z-level coordinate model and a hybrid approach give similar results when the effective vertical resolution adjacent to the ice shelf base is similar, despite each model employing different paradigms for distributing meltwater fluxes and sampling tracers for melting. We provide a benchmark for thermodynamic ice shelf–ocean interaction with different model vertical coordinates and vertical resolutions, and suggest a framework for any future ice shelf–ocean thermodynamic parameterisations. © 2020 The Authors
  • Item
    Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
    (München : European Geopyhsical Union, 2016) Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël; Galton-Fenzi, Benjamin K.; Gladstone, Rupert M.; Gudmundsson, G. Hilmar; Hattermann, Tore; Holland, David M.; Holland, Denise; Holland, Paul R.; Martin, Daniel F.; Mathiot, Pierre; Pattyn, Frank; Seroussi, Hélène
    Coupled ice sheet–ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet–ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.
  • Item
    ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century
    (Katlenburg-Lindau : Copernicus, 2020) Seroussi, Hélène; Nowicki, Sophie; Payne, Antony J.; Goelzer, Heiko; Lipscomb, William H.; Abe-Ouchi, Ayako; Agosta, Cécile; Albrecht, Torsten; Asay-Davis, Xylar; Barthel, Alice; Calov, Reinhard; Cullather, Richard; Dumas, Christophe; Galton-Fenzi, Benjamin K.; Gladstone, Rupert; Golledge, Nicholas R.; Gregory, Jonathan M.; Greve, Ralf; Hattermann, Tore; Hoffman, Matthew J.; Humbert, Angelika; Huybrechts, Philippe; Jourdain, Nicolas C.; Kleiner, Thomas; Larour, Eric; Leguy, Gunter R.; Lowry, Daniel P.; Little, Chistopher M.; Morlighem, Mathieu; Pattyn, Frank; Pelle, Tyler; Price, Stephen F.; Quiquet, Aurélien; Reese, Ronja; Schlegel, Nicole-Jeanne; Shepherd, Andrew; Simon, Erika; Smith, Robin S.; Straneo, Fiammetta; Sun, Sainan; Trusel, Luke D.; Van Breedam, Jonas; van de Wal, Roderik S. W.; Winkelmann, Ricarda; Zhao, Chen; Zhang, Tong; Zwinger, Thomas
    Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. © Author(s) 2020.