Search Results

Now showing 1 - 2 of 2
  • Item
    Heinrich event 1: An example of dynamical ice-sheet reaction to oceanic changes
    (München : European Geopyhsical Union, 2011) Álvarez-Solas, J.; Montoya, M.; Ritz, C.; Ramstein, G.; Charbit, S.; Dumas, C.; Nisancioglu, K.; Dokken, T.; Ganopolski, A.
    Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep water (NADW) formation. However, recent paleoclimate data have revealed that most of these events probably occurred after the AMOC had already slowed down or/and NADW largely collapsed, within about a thousand years (Hall et al., 2006; Hemming, 2004; Jonkers et al., 2010; Roche et al., 2004), implying that the initial AMOC reduction could not have been caused by the Heinrich events themselves. Here we propose an alternative driving mechanism, specifically for Heinrich event 1 (H1; 18 to 15 ka BP), by which North Atlantic ocean circulation changes are found to have strong impacts on LIS dynamics. By combining simulations with a coupled climate model and a three-dimensional ice sheet model, our study illustrates how reduced NADW and AMOC weakening lead to a subsurface warming in the Nordic and Labrador Seas resulting in rapid melting of the Hudson Strait and Labrador ice shelves. Lack of buttressing by the ice shelves implies a substantial ice-stream acceleration, enhanced ice-discharge and sea level rise, with peak values 500–1500 yr after the initial AMOC reduction. Our scenario modifies the previous paradigm of H1 by solving the paradox of its occurrence during a cold surface period, and highlights the importance of taking into account the effects of oceanic circulation on ice-sheets dynamics in order to elucidate the triggering mechanism of Heinrich events.
  • Item
    The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations
    (München : European Geopyhsical Union, 2007) Weber, S.L.; Drijfhout, S.S.; Abe-Ouchi, A.; Crucifix, M.; Eby, M.; Ganopolski, A.; Murakami, S.; Otto-Bliesner, B.; Peltier, W.R.
    This study analyses the response of the Atlantic meridional overturning circulation (AMOC) to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40%) during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%). It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW) and North Atlantic Deep Water (NADW) at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.