Search Results

Now showing 1 - 2 of 2
  • Item
    The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles
    (München : European Geopyhsical Union, 2011) Ganopolski, A.; Calov, R.
    The origin of the 100 kyr cyclicity, which dominates ice volume variations and other climate records over the past million years, remains debatable. Here, using a comprehensive Earth system model of intermediate complexity, we demonstrate that both strong 100 kyr periodicity in the ice volume variations and the timing of glacial terminations during past 800 kyr can be successfully simulated as direct, strongly nonlinear responses of the climate-cryosphere system to orbital forcing alone, if the atmospheric CO2 concentration stays below its typical interglacial value. The existence of long glacial cycles is primarily attributed to the North American ice sheet and requires the presence of a large continental area with exposed rocks. We show that the sharp, 100 kyr peak in the power spectrum of ice volume results from the long glacial cycles being synchronized with the Earth's orbital eccentricity. Although 100 kyr cyclicity can be simulated with a constant CO2 concentration, temporal variability in the CO2 concentration plays an important role in the amplification of the 100 kyr cycles.
  • Item
    A simple conceptual model of abrupt glacial climate events
    (Göttingen : Copernicus GmbH, 2007) Braun, H.; Ganopolski, A.; Christl, M.; Chialvo, D.R.
    Here we use a very simple conceptual model in an attempt to reduce essential parts of the complex nonlinearity of abrupt glacial climate changes (the so-called Dansgaard-Oeschger events) to a few simple principles, namely (i) the existence of two different climate states, (ii) a threshold process and (iii) an overshooting in the stability of the system at the start and the end of the events, which is followed by a millennial-scale relaxation. By comparison with a so-called Earth system model of intermediate complexity (CLIMBER-2), in which the events represent oscillations between two climate states corresponding to two fundamentally different modes of deep-water formation in the North Atlantic, we demonstrate that the conceptual model captures fundamental aspects of the nonlinearity of the events in that model. We use the conceptual model in order to reproduce and reanalyse nonlinear resonance mechanisms that were already suggested in order to explain the characteristic time scale of Dansgaard-Oeschger events. In doing so we identify a new form of stochastic resonance (i.e. an overshooting stochastic resonance) and provide the first explicitly reported manifestation of ghost resonance in a geosystem, i.e. of a mechanism which could be relevant for other systems with thresholds and with multiple states of operation. Our work enables us to explicitly simulate realistic probability measures of Dansgaard-Oeschger events (e.g. waiting time distributions, which are a prerequisite for statistical analyses on the regularity of the events by means of Monte-Carlo simulations). We thus think that our study is an important advance in order to develop more adequate methods to test the statistical significance and the origin of the proposed glacial 1470-year climate cycle.