Search Results

Now showing 1 - 8 of 8
  • Item
    Li+/H+ exchange of Li7La3Zr2O12 single and polycrystals investigated by quantitative LIBS depth profiling
    (Cambridge : Royal Society of Chemistry, 2022) Smetaczek, Stefan; Limbeck, Andreas; Zeller, Veronika; Ring, Joseph; Ganschow, Steffen; Rettenwander, Daniel; Fleig, Jürgen
    Li7La3Zr2O12 (LLZO) garnets are highly attractive to be used as solid electrolyte in solid-state Li batteries. However, LLZO suffers from chemical interaction with air and humidity, causing Li+/H+ exchange with detrimental implication on its performance, processing and scalability. To better understand the kinetics of the detrimental Li+/H+ exchange and its dependence on microstructural features, accelerated Li+/H+ exchange experiments were performed on single crystalline and polycrystalline LLZO, exposed for 80 minutes to 80 °C hot water. The resulting chemical changes were quantified by analytical methods, i.e. inductively coupled plasma optical emission spectroscopy (ICP-OES) and laser induced breakdown spectroscopy (LIBS). From the time dependence of the Li+ enrichment in the water, measured by ICP-OES, a bulk interdiffusion coefficient of Li+/H+ could be determined (7 × 10−17 m2 s−1 at 80 °C). Depth dependent concentrations were obtained from the LIBS data for both ions after establishing a calibration method enabling not only Li+ but also H+ quantification in the solid electrolyte. Short interdiffusion lengths in the 1 μm range are found for the single crystalline Ga:LLZO, in accordance with the measured bulk diffusion coefficient. In polycrystalline Ta:LLZO, however, very long diffusion tails in the 20 μm range and ion exchange fractions up to about 70% are observed. Those are attributed to fast ion interdiffusion along grain boundaries. The severe compositional changes also strongly affect the electrical properties measured by impedance spectroscopy. This study highlights that microstructural effects may be decisive for the Li+/H+ ion exchange kinetics of LLZO.
  • Item
    Elastic properties of single crystal Bi12SiO20 as a function of pressure and temperature and acoustic attenuation effects in Bi12 MO20 (M = Si, Ge and Ti)
    (Bristol : IOP Publ., 2020) Haussühl, Eiken; Reichmann, Hans Josef; Schreuer, Jürgen; Friedrich, Alexandra; Hirschle, Christian; Bayarjargal, Lkhamsuren; Winkler, Björn; Alencar, Igor; Wiehl, Leonore; Ganschow, Steffen
    A comprehensive study of sillenite Bi12SiO20 single-crystal properties, including elastic stiffness and piezoelectric coefficients, dielectric permittivity, thermal expansion and molar heat capacity, is presented. Brillouin-interferometry measurements (up to 27 GPa), which were performed at high pressures for the first time, and ab initio calculations based on density functional theory (up to 50 GPa) show the stability of the sillenite structure in the investigated pressure range, in agreement with previous studies. Elastic stiffness coefficients c 11 and c 12 are found to increase continuously with pressure while c 44 increases slightly for lower pressures and remains nearly constant above 15 GPa. Heat-capacity measurements were performed with a quasi-adiabatic calorimeter employing the relaxation method between 2 K and 395 K. No phase transition could be observed in this temperature interval. Standard molar entropy, enthalpy change and Debye temperature are extracted from the data. The results are found to be roughly half of the previous values reported in the literature. The discrepancy is attributed to the overestimation of the Debye temperature which was extracted from high-temperature data. Additionally, Debye temperatures obtained from mean sound velocities derived by Voigt-Reuss averaging are in agreement with our heat-capacity results. Finally, a complete set of electromechanical coefficients was deduced from the application of resonant ultrasound spectroscopy between 103 K and 733 K. No discontinuities in the temperature dependence of the coefficients are observed. High-temperature (up to 1100 K) resonant ultrasound spectra recorded for Bi12 MO20 crystals revealed strong and reversible acoustic dissipation effects at 870 K, 960 K and 550 K for M = Si, Ge and Ti, respectively. Resonances with small contributions from the elastic shear stiffness c 44 and the piezoelectric stress coefficient e 123 are almost unaffected by this dissipation. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Investigating the electrochemical stability of Li7La3Zr2O12 solid electrolytes using field stress experiments
    (London [u.a.] : RSC, 2021) Smetaczek, Stefan; Pycha, Eva; Ring, Joseph; Siebenhofer, Matthäus; Ganschow, Steffen; Berendts, Stefan; Nenning, Andreas; Kubicek, Markus; Rettenwander, Daniel; Limbeck, Andreas; Fleig, Jürgen
    Cubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1–4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.
  • Item
    Bulk single crystals and physical properties of β-(AlxGa1-x)2O3(x = 0-0.35) grown by the Czochralski method
    (Melville, NY : American Inst. of Physics, 2023) Galazka, Zbigniew; Fiedler, Andreas; Popp, Andreas; Ganschow, Steffen; Kwasniewski, Albert; Seyidov, Palvan; Pietsch, Mike; Dittmar, Andrea; Anooz, Saud Bin; Irmscher, Klaus; Suendermann, Manuela; Klimm, Detlef; Chou, Ta-Shun; Rehm, Jana; Schroeder, Thomas; Bickermann, Matthias
    We have systematically studied the growth, by the Czochralski method, and basic physical properties of a 2 cm and 2 in. diameter bulk β-(AlxGa1-x)2O3 single crystal with [Al] = 0-35 mol. % in the melt in 5 mol. % steps. The segregation coefficient of Al in the Ga2O3 melt of 1.1-1.2 results in a higher Al content in the crystals than in the melt. The crystals were also co-doped with Si or Mg. [Al] = 30 mol. % in the melt (33-36 mol. % in the crystals) seems to be a limit for obtaining bulk single crystals of high structural quality suitable for homoepitaxy. The crystals were either semiconducting (no intentional co-dopants with [Al] = 0-30 mol. % and Si-doped with [Al] = 15-20 mol. %), degenerately semiconducting (Si-doped with [Al] ≤ 15 mol. %), or semi-insulating ([Al] ≥ 25 mol. % and/or Mg-doped). The full width at half maximum of the rocking curve was 30-50 arcsec. The crystals showed a linear but anisotropic decrease in all lattice constants and a linear increase in the optical bandgap (5.6 eV for [Al] = 30 mol. %). The room temperature electron mobility at similar free electron concentrations gradually decreases with [Al], presumably due to enhanced scattering at phonons as the result of a larger lattice distortion. In Si co-doped crystals, the scattering is enhanced by ionized impurities. Measured electron mobilities and bandgaps enabled to estimate the Baliga figure of merit for electronic devices.
  • Item
    Melt Growth and Physical Properties of Bulk LaInO3 Single Crystals
    (Weinheim : Wiley-VCH, 2021) Galazka, Zbigniew; Irmscher, Klaus; Ganschow, Steffen; Zupancic, Martina; Aggoune, Wahib; Draxl, Claudia; Albrecht, Martin; Klimm, Detlef; Kwasniewski, Albert; Schulz, Tobias; Pietsch, Mike; Dittmar, Andrea; Grueneberg, Raimund; Juda, Uta; Schewski, Robert; Bergmann, Sabine; Cho, Hyeongmin; Char, Kookrin; Schroeder, Thomas; Bickermann, Matthias
    Large bulk LaInO3 single crystals are grown from the melt contained within iridium crucibles by the vertical gradient freeze (VGF) method. The obtained crystals are undoped or intentionally doped with Ba or Ce, and enabled wafer fabrication of size 10 × 10 mm2. High melting point of LaInO3 (≈1880 °C) and thermal instability at high temperatures require specific conditions for bulk crystal growth. The crystals do not undergo any phase transition up to 1300 °C, above which a noticeable thermal decomposition takes place. The good structural quality of the crystals makes them suitable for epitaxy. The onset of strong optical absorption shows orientation-dependent behavior due to the orthorhombic symmetry of the LaInO3 crystals. Assuming direct transitions, optical bandgaps of 4.35 and 4.39 eV are obtained for polarizations along the [010] and the [100], [001] crystallographic directions, respectively. There is an additional weak absorption in the range between 2.8 and 4 eV due to oxygen vacancies. Density-functional-theory calculations support the interpretation of the optical absorption data. Cathodoluminescence spectra show a broad, structured emission band peaking at ≈2.2 eV. All bulk crystals are electrically insulating. The relative static dielectric constant is determined at a value of 24.6 along the [001] direction.
  • Item
    Experimental Hall electron mobility of bulk single crystals of transparent semiconducting oxides
    (Cambridge [u.a.] : Cambridge Univ. Press, 2021) Galazka, Zbigniew; Irmscher, Klaus; Pietsch, Mike; Ganschow, Steffen; Schulz, Detlev; Klimm, Detlef; Hanke, Isabelle M.; Schroeder, Thomas; Bickermann, Matthias
    We provide a comparative study of basic electrical properties of bulk single crystals of transparent semiconducting oxides (TSOs) obtained directly from the melt (9 compounds) and from the gas phase (1 compound), including binary (β-Ga2O3, In2O3, ZnO, SnO2), ternary (ZnSnO3, BaSnO3, MgGa2O4, ZnGa2O4), and quaternary (Zn1−xMgxGa2O4, InGaZnO4) systems. Experimental outcome, covering over 200 samples measured at room temperature, revealed n-type conductivity of all TSOs with free electron concentrations (ne) between 5 × 1015 and 5 × 1020 cm−3 and Hall electron mobilities (μH) up to 240 cm2 V−1 s−1. The widest range of ne values was achieved for β-Ga2O3 and In2O3. The most electrically conducting bulk crystals are InGaZnO4 and ZnSnO3 with ne > 1020 cm−3 and μH > 100 cm2 V−1 s−1. The highest μH values > 200 cm2 V−1 s−1 were measured for SnO2, followed by BaSnO3 and In2O3 single crystals. In2O3, ZnO, ZnSnO3, and InGaZnO4 crystals were always conducting, while others could be turned into electrical insulators.
  • Item
    The natural critical current density limit for Li7La3Zr2O12 garnets
    (London [u.a.] : RSC, 2020) Flatscher, Florian; Philipp, Martin; Ganschow, Steffen; Wilkening, H. Martin R.; Rettenwander, Daniel
    Ceramic batteries equipped with Li-metal anodes are expected to double the energy density of conventional Li-ion batteries. Besides high energy densities, also high power is needed when batteries have to be developed for electric vehicles. Practically speaking, so-called critical current densities (CCD) higher than 3 mA cm-2 are needed to realize such systems. As yet, this value has, however, not been achieved for garnet-type Li7La3Zr2O12 (LLZO) being one of the most promising ceramic electrolytes. Most likely, CCD values are influenced by the area specific resistance (ASR) governing ionic transport across the Li|electrolyte interface. Here, single crystals of LLZO with adjusted ASR are used to quantify this relationship in a systematic manner. It turned out that CCD values exponentially decrease with increasing ASR. The highest obtained CCD value was as high as 280 µA cm-2. This value should be regarded as the room-temperature limit for LLZO when no external pressure is applied. Concluding, for polycrystalline samples either stack pressure or a significant increase of the interfacial area is needed to reach current densities equal or higher than the above-mentioned target value. This journal is © The Royal Society of Chemistry.
  • Item
    Spectroscopy and 2.1 µm laser operation of Czochralski-grown Tm3+:YScO3 crystals
    (Washington, DC : Soc., 2022) Suzuki, Anna; Kalusniak, Sascha; Tanaka, Hiroki; Brützam, Mario; Ganschow, Steffen; Tokurakawa, Masaki; Kränkel, Christian
    We report on growth, temperature-dependent spectroscopy, and laser experiments of Tm3+-doped YScO3 mixed sesquioxide crystals. For the first time, cm3-scale laser quality Tm3+:YScO3 crystals with 2.2 at.% and 3.1 at.% doping levels were grown by the Czochralski method from iridium crucibles. We reveal that the structural disorder in the mixed crystals allows for broad and smooth spectral features even at cryogenic temperatures. We obtained the first continuous wave laser operation in this material at wavelengths around 2100 nm using a laser diode emitting at 780 nm as a pump source. A maximum slope efficiency of 45% was achieved using a Tm3 + (3.1 at.%):YScO3 crystal. Our findings demonstrate the high potential of Tm3+-doped mixed sesquioxides for efficient ultrafast pulse generation in the 2.1 µm range.