Search Results

Now showing 1 - 3 of 3
  • Item
    Synthesis of surfactant-free Cu–Pt dendritic heterostructures with highly electrocatalytic performance for methanol oxidation reaction
    (London [u.a.] : Taylor & Francis, 2016) Kang, Shendong; Gao, Guanhui; Xie, Xiaobin; Shibayama, Tamaki; Lei, Yanhua; Wang, Yan; Cai, Lintao
    A facile and free surfactant strategy is explored to synthesize Cu–Pt bimetallic nano-heterostructures with dendritic exterior. For comparison, the Cu–Pt coral-like nanoparticles are fabricated by using CTAC as a surfactant. The well-designed Cu–Pt dendritic spherical heterostructures exhibit superior enhanced electrocatalytic activity and stability toward methanol oxidation reaction in alkaline media, compared to the Cu–Pt coral-like nanoparticles and the commercial Pt/C, respectively. The advanced technique for fabricating Cu–Pt dendritic spherical heterostructures could pave a way to pursue low-cost Pt-based catalysts, maintaining highly promoted electrocatalytic performance and durability.
  • Item
    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
    ([London] : Nature Publishing Group UK, 2020) He, Yongmin; Tang, Pengyi; Hu, Zhili; He, Qiyuan; Zhu, Chao; Wang, Luqing; Zeng, Qingsheng; Golani, Prafful; Gao, Guanhui; Fu, Wei; Huang, Zhiqi; Gao, Caitian; Xia, Juan; Wang, Xingli; Wang, Xuewen; Zhu, Chao; Ramasse, Quentin M.; Zhang, Ao; An, Boxing; Zhang, Yongzhe; Martí-Sánchez, Sara; Morante, Joan Ramon; Wang, Liang; Tay, Beng Kang; Yakobson, Boris I.; Trampert, Achim; Zhang, Hua; Wu, Minghong; Wang, Qi Jie; Arbiol, Jordi; Liu, Zheng
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.
  • Item
    Indocyanine Green-Loaded Polydopamine-Reduced Graphene Oxide Nanocomposites with Amplifying Photoacoustic and Photothermal Effects for Cancer Theranostics
    (Wyoming, NSW : Ivyspring, 2016) Hu, Dehong; Zhang, Jingnan; Gao, Guanhui; Sheng, Zonghai; Cui, Haodong; Cai, Lintao
    Photoacoustic (PA) imaging and photothermal therapy (PTT) as light-induced theranostic platforms have been attracted much attention in recent years. However, the development of highly efficient and integrated phototheranostic nanoagents for amplifying PA imaging and PTT treatments poses great challenges. Here, we report a novel phototheranostic nanoagent using indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites (ICG-PDA-rGO) with amplifying PA and PTT effects for cancer theranostics. The results demonstrate that the PDA layer coating on the surface of rGO could effectively absorb a large number of ICG molecules, quench ICG's fluorescence, and enhance the PDA-rGO's optical absorption at 780 nm. The obtained ICG-PDA-rGO exhibits stronger PTT effect and higher PA contrast than that of pure GO and PDA-rGO. After PA imaging-guided PTT treatments, the tumors in 4T1 breast subcutaneous and orthotopic mice models are suppressed completely and no treatment-induced toxicity being observed. It illustrates that the ICG-PDA-rGO nanocomposites constitute a new class of theranostic nanomedicine for amplifying PA imaging and PTT treatments.