Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes

2022-10-31, Joseph, Anton, Wagner, Anna M., Garay-Sarmiento, Manuela, Aleksanyan, Mina, Haraszti, Tamás, Söder, Dominik, Georgiev, Vasil N., Dimova, Rumiana, Percec, Virgil, Rodriguez-Emmenegger, Cesar

Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond.

Loading...
Thumbnail Image
Item

Unraveling the Mechanism and Kinetics of Binding of an LCI-eGFP-Polymer for Antifouling Coatings

2021, Söder, Dominik, Garay-Sarmiento, Manuela, Rahimi, Khosrow, Obstals, Fabian, Dedisch, Sarah, Haraszti, Tamás, Davari, Mehdi D., Jakob, Felix, Heß, Christoph, Schwaneberg, Ulrich, Rodriguez-Emmenegger, Cesar

The ability of proteins to adsorb irreversibly onto surfaces opens new possibilities to functionalize biological interfaces. Herein, the mechanism and kinetics of adsorption of protein-polymer macromolecules with the ability to equip surfaces with antifouling properties are investigated. These macromolecules consist of the liquid chromatography peak I peptide from which antifouling polymer brushes are grafted using single electron transfer-living radical polymerization. Surface plasmon resonance spectroscopy reveals an adsorption mechanism that follows a Langmuir-type of binding with a strong binding affinity to gold. X-ray reflectivity supports this by proving that the binding occurs exclusively by the peptide. However, the lateral organization at the surface is directed by the cylindrical eGFP. The antifouling functionality of the unimolecular coatings is confirmed by contact with blood plasma. All coatings reduce the fouling from blood plasma by 8894% with only minor effect of the degree of polymerization for the studied range (DP between 101 and 932). The excellent antifouling properties, combined with the ease of polymerization and the straightforward coating procedure make this a very promising antifouling concept for a multiplicity of applications.

Loading...
Thumbnail Image
Item

A green solvent-to-polymer upgrading approach to water-soluble LCST poly(N-substituted lactamide acrylate)s

2022, Palà, Marc, El Khannaji, Hafssa, Garay-Sarmiento, Manuela, Ronda, Juan Carlos, Cádiz, Virginia, Galià, Marina, Percec, Virgil, Rodriguez-Emmenegger, César, Lligadas, Gerard

We report a green solvent-to-polymer upgrading transformation of chemicals of the lactic acid portfolio into water-soluble lower critical solution temperature (LCST)-type acrylic polymers. Aqueous Cu(0)-mediated living radical polymerization (SET-LRP) was utilized for the rapid synthesis of N-substituted lactamide-type homo and random acrylic copolymers under mild conditions. A particularly unique aspect of this work is that the water-soluble monomers and the SET-LRP initiator used to produce the corresponding polymers were synthesized from biorenewable and non-toxic solvents, namely natural ethyl lactate and BASF's Agnique® AMD 3L (N,N-dimethyl lactamide, DML). The pre-disproportionation of Cu(I)Br in the presence of tris[2-(dimethylamino)ethyl]amine (Me6TREN) in water generated nascent Cu(0) and Cu(II) complexes that facilitated the fast polymerization of N-tetrahydrofurfuryl lactamide and N,N-dimethyl lactamide acrylate monomers (THFLA and DMLA, respectively) up to near-quantitative conversion with excellent control over molecular weight (5000 < Mn < 83 000) and dispersity (1.05 < Đ < 1.16). Interestingly, poly(THFLA) showed a degree of polymerization and concentration dependent LCST behavior, which can be fine-tuned (Tcp = 12–62 °C) through random copolymerization with the more hydrophilic DMLA monomer. Finally, covalent cross-linking of these polymers resulted in a new family of thermo-responsive hydrogels with excellent biocompatibility and tunable swelling and LCST transition. These illustrate the versatility of these neoteric green polymers in the preparation of smart and biocompatible soft materials.