Search Results

Now showing 1 - 6 of 6
  • Item
    Experimental and numerical characterization of imperfect additively manufactured lattices based on triply periodic minimal surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2023) Günther, Fabian; Pilz, Stefan; Hirsch, Franz; Wagner, Markus; Kästner, Markus; Gebert, Annett; Zimmermann, Martina
    Lattices based on triply periodic minimal surfaces (TPMS) are attracting increasing interest in seminal industries such as bone tissue engineering due to their excellent structure-property relationships. However, the potential can only be exploited if their structural integrity is ensured. This requires a fundamental understanding of the impact of imperfections that arise during additive manufacturing. Therefore, in the present study, the structure-property relationships of eight TPMS lattices, including their imperfections, are investigated experimentally and numerically. In particular, the focus is on biomimetic network TPMS lattices of the type Schoen I-WP and Gyroid, which are fabricated by laser powder bed fusion from the biocompatible alloy Ti-42Nb. The experimental studies include computed tomography measurements and compression tests. The results highlight the importance of process-related imperfections on the mechanical performance of TPMS lattices. In the numerical work, firstly the as-built morphology is artificially reconstructed before finite element analyses are performed. Here, the reconstruction procedure previously developed by the same authors is used and validated on a larger experimental matrix before more advanced calculations are conducted. Specifically, the reconstruction reduces the numerical overestimation of stiffness from up to 341% to a maximum of 26% and that of yield strength from 66% to 12%. Given a high simulation accuracy and flexibility, the presented procedure can become a key factor in the future design process of TPMS lattices.
  • Item
    Controlling the Young’s modulus of a ß-type Ti-Nb alloy via strong texturing by LPBF
    (Amsterdam [u.a.] : Elsevier Science, 2022) Pilz, Stefan; Gustmann, Tobias; Günther, Fabian; Zimmermann, Martina; Kühn, Uta; Gebert, Annett
    The ß-type Ti-42Nb alloy was processed by laser powder bed fusion (LPBF) with an infrared top hat laser configuration aiming to control the Young’s modulus by creating an adapted crystallographic texture. Utilizing a top hat laser, a microstructure with a strong 〈0 0 1〉 texture parallel to the building direction and highly elongated grains was generated. This microstructure results in a strong anisotropy of the Young’s modulus that was modeled based on the single crystal elastic tensor and the experimental texture data. Tensile tests along selected loading directions were conducted to study the mechanical anisotropy and showed a good correlation with the modeled data. A Young’s modulus as low as 44 GPa was measured parallel to the building direction, which corresponds to a significant reduction of over 30% compared to the Young’s modulus of the Gaussian reference samples (67–69 GPa). At the same time a high 0.2% yield strength of 674 MPa was retained. The results reveal the high potential of LPBF processing utilizing a top hat laser configuration to fabricate patient-specific implants with an adapted low Young’s modulus along the main loading direction and a tailored mechanical biofunctionality.
  • Item
    Fabrication of four-level hierarchical topographies through the combination of LIPSS and direct laser interference pattering on near-beta titanium alloy
    (New York, NY [u.a.] : Elsevier, 2022) Schell, Frederic; Alamri, Sabri; Hariharan, Avinash; Gebert, Annett; Lasagni, Andrés Fabián; Kunze, Tim
    Complex repetitive periodic surface patterns were produced on a near-beta Ti-13Nb-13Zr alloy, using two-beam Direct Laser Interference Patterning (DLIP) employing a picosecond-pulsed laser source with wavelengths of 355 nm, 532 nm and 1064 nm. Different types of Laser-induced periodic surface structures (LIPSS) are produced, including low and high spatial frequency LIPSS, which are observed frequently on top of the line-like DLIP microstructures, as well as quasi-periodic microstructures with periods greater than the laser wavelength. The feature size of the fabricated LIPSS features could be tuned as function of the utilized laser process parameters.
  • Item
    Designing the microstructural constituents of an additively manufactured near β Ti alloy for an enhanced mechanical and corrosion response
    (Amsterdam [u.a.] : Elsevier Science, 2022) Hariharan, Avinash; Goldberg, Phil; Gustmann, Tobias; Maawad, Emad; Pilz, Stefan; Schell, Frederic; Kunze, Tim; Zwahr, Christoph; Gebert, Annett
    Additive manufacturing of near β-type Ti-13Nb-13Zr alloys using the laser powder bed fusion process (LPBF) opens up new avenues to tailor the microstructure and subsequent macro-scale properties that aids in developing new generation patient-specific, load-bearing orthopedic implants. In this work, we investigate a wide range of LPBF parameter space to optimize the volumetric energy density, surface characteristics and melt track widths to achieve a stable process and part density of greater than 99 %. Further, optimized sample states were achieved via thermal post-processing using standard capability aging, super-transus (900 °C) and sub-transus (660 °C) heat treatment strategies with varying quenching mediums (air, water and ice). The applied heat treatment strategies induce various fractions of α, martensite (α', α'') in combination with the β phase and strongly correlated with the observed enhanced mechanical properties and a relatively low elastic modulus. In summary, our work highlights a practical strategy for optimizing the mechanical and corrosion properties of a LPBF produced near β-type Ti-13Nb-13Zr alloy via careful evaluation of processing and post-processing steps and the interrelation to the corresponding microstructures. Corrosion studies revealed excellent corrosion resistances of the heat-treated LPBF samples comparable to wrought Ti-13Nb-13Zr alloys.
  • Item
    Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces
    (Amsterdam [u.a.] : Elsevier Science, 2022) Günther, Fabian; Hirsch, Franz; Pilz, Stefan; Wagner, Markus; Gebert, Annett; Kästner, Markus; Zimmermann, Martina
    Lattices based on triply periodic minimal surfaces (TPMS) have recently attracted increasing interest, but their additive manufacturing (AM) is fraught with imperfections that compromise their structural integrity. Initial research has addressed the influence of process-induced imperfections in lattices, but so far numerical work for TPMS lattices is insufficient. Therefore, in the present study, the structure–property relationships of TPMS lattices, including their imperfections, are investigated experimentally and numerically. The main focus is on a biomimetic Schoen I-WP network lattice made of laser powder bed fusion (LPBF) processed Ti-42Nb designed for bone tissue engineering (BTE). The lattice is scanned by computed tomography (CT) and its as-built morphology is examined before a modeling procedure for artificial reconstruction is developed. The structure–property relationships are analyzed by experimental and numerical compression tests. An anisotropic elastoplastic material model is parameterized for finite element analyses (FEA). The numerical results indicates that the reconstruction of the as-built morphology decisively improves the prediction accuracy compared to the ideal design. This work highlights the central importance of process-related imperfections for the structure–property relationships of TPMS lattices and proposes a modeling procedure to capture their implications.
  • Item
    Tailoring biocompatible Ti-Zr-Nb-Hf-Si metallic glasses based on high-entropy alloys design approach
    (Amsterdam : Elsevier, 2020) Calin, Mariana; Vishnu, Jithin; Thirathipviwat, Pramote; Popa, Monica-Mihaela; Krautz, Maria; Manivasagam, Geetha; Gebert, Annett
    Present work unveils novel magnetic resonance imaging (MRI) compatible glassy Ti-Zr-Nb-Hf-Si alloys designed based on a high entropy alloys approach, by exploring the central region of multi-component alloy phase space. Phase analysis has revealed the amorphous structure of developed alloys, with a higher thermal stability than the conventional metallic glasses. The alloys exhibit excellent corrosion properties in simulated body fluid. Most importantly, the weak paramagnetic nature (ultralow magnetic susceptibility) and superior radiopacity (high X-ray attenuation coefficients) offer compatibility with medical diagnostic imaging systems thereby opening unexplored realms for biomedical applications.