Search Results

Now showing 1 - 2 of 2
  • Item
    Effect of Selective Laser Melting on Microstructure, Mechanical, and Corrosion Properties of Biodegradable FeMnCS for Implant Applications
    (Weinheim : Wiley-VCH Verl., 2020) Hufenbach, Julia; Sander, Jan; Kochta, Fabian; Pilz, Stefan; Voss, Andrea; Kühn, Uta; Gebert, Annett
    Selective laser melting (SLM) of biodegradable metallic materials offers a great potential for manufacturing customized implants. Herein, SLM processing of a novel Fe–30Mn–1C–0.02S twinning-induced plasticity (TWIP) alloy and the resulting structural, mechanical, and corrosion properties are presented. The occurring rapid solidification results in a fine-grained austenitic microstructure with mainly homogeneous element distribution, which is investigated by scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX) and electron backscatter diffraction (EBSD) as well as X-ray diffraction (XRD). By processing the alloy via SLM, significantly higher strengths under tensile and compressive load in comparison with those for the as-cast counterpart and a 316L reference steel are achieved. Electrochemical corrosion tests in a simulated body fluid (SBF) indicate a moderate corrosion activity, and a beneficial uniform degradation is shown in immersion tests in SBF. Regarding the envisaged application for vascular implants, SLM-processed stent prototypes out of the novel alloy are presented and a first functionality test is shown. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A comparative study of the influence of the deposition technique (electrodeposition versus sputtering) on the properties of nanostructured Fe70Pd30 films
    (Abington : Taylor & Francis, 2020) Cialone, Matteo; Fernandez-Barcia, Monica; Celegato, Federica; Coisson, Marco; Barrera, Gabriele; Uhlemann, Margitta; Gebert, Annett; Sort, Jordi; Pellicer, Eva; Rizzi, Paola; Tiberto, Paola
    Sputtering and electrodeposition are among the most widespread techniques for metallic thin film deposition. Since these techniques operate under different principles, the resulting films typically show different microstructures even when the chemical composition is kept fixed. In this work, films of Fe70Pd30 were produced in a thickness range between 30 and 600 nm, using both electrodeposition and sputtering. The electrodeposited films were deposited under potentiostatic regime from an ammonia sulfosalicylic acid-based aqueous solution. Meanwhile, the sputtered films were deposited from a composite target in radio frequency regime. Both approaches were proven to yield high quality and homogenous films. However, their crystallographic structure was different. Although all films were polycrystalline and Fe and Pd formed a solid solution with a body-centered cubic structure, a palladium hydride phase was additionally detected in the electrodeposited films. The occurrence of this phase induced internal stress in the films, thereby influencing their magnetic properties. In particular, the thickest electrodeposited Fe70Pd30 films showed out-of-plane magnetic anisotropy, whereas the magnetization easy axis lied in the film plane for all the sputtered films. The domain pattern of the electrodeposited films was investigated by magnetic force microscopy. Finally, nanoindentation studies highlighted the high quality of both the sputtered and electrodeposited films, the former exhibiting higher reduced Young’s modulus and Berkovich hardness values.