Search Results

Now showing 1 - 6 of 6
  • Item
    Beam damage of single semiconductor nanowires during X-ray nanobeam diffraction experiments
    (Chester : IUCr, 2020) Al Hassan, Ali; Lähnemann, Jonas; Davtyan, Arman; Al-Humaidi, Mahmoud; Herranz, Jesús; Bahrami, Danial; Anjum, Taseer; Bertram, Florian; Dey, Arka Bikash; Geelhaar, Lutz; Pietsch, Ullrich
    Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.
  • Item
    Self-Assembly of Well-Separated AlN Nanowires Directly on Sputtered Metallic TiN Films
    (Weinheim : Wiley-VCH, 2020) Azadmand, Mani; Auzelle, Thomas; Lähnemann, Jonas; Gao, Guanhui; Nicolai, Lars; Ramsteiner, Manfred; Trampert, Achim; Sanguinetti, Stefano; Brandt, Oliver; Geelhaar, Lutz
    Herein, the self-assembled formation of AlN nanowires (NWs) by molecular beam epitaxy on sputtered TiN films on sapphire is demonstrated. This choice of substrate allows growth at an exceptionally high temperature of 1180 °C. In contrast to previous reports, the NWs are well separated and do not suffer from pronounced coalescence. This achievement is explained by sufficient Al adatom diffusion on the substrate and the NW sidewalls. The high crystalline quality of the NWs is evidenced by the observation of near-band-edge emission in the cathodoluminescence spectrum. The key factor for the low NW coalescence is the TiN film, which spectroscopic ellipsometry and Raman spectroscopy indicate to be stoichiometric. Its metallic nature will be beneficial for optoelectronic devices using these NWs as the basis for (Al,Ga)N/AlN heterostructures emitting in the deep ultraviolet spectral range.
  • Item
    Impact of Electrical Current on Single GaAs Nanowire Structure
    (Weinheim : Wiley-VCH, 2021) Bahrami, Danial; AlHassan, Ali; Davtyan, Arman; Zhe, Ren; Anjum, Taseer; Herranz, Jesús; Geelhaar, Lutz; Novikov, Dmitri V.; Timm, Rainer; Pietsch, Ullrich
    The impact of electrical current on the structure of single free-standing Be-doped GaAs nanowires grown on a Si 111 substrate is investigated. Single nanowires have been structurally analyzed by X-ray nanodiffraction using synchrotron radiation before and after the application of an electrical current. The conductivity measurements on single nanowires in their as-grown geometry have been realized via W-probes installed inside a dual-beam focused ion beam/scanning electron microscopy chamber. Comparing reciprocal space maps of the 111 Bragg reflection, extracted perpendicular to the nanowire growth axis before and after the conductivity measurement, the structural impact of the electrical current is evidenced, including deformation of the hexagonal nanowire cross section, tilting, and bending with respect to the substrate normal. For electrical current densities below 30 A mm−2, the induced changes in the reciprocal space maps are negligible. However, for a current density of 347 A mm−2, the diffraction pattern is completely distorted. The mean cross section of the illuminated nanowire volume is reconstructed from the reciprocal space maps before and after the application of electrical current. Interestingly, the elongation of two pairs of opposing side facets accompanied by shrinkage of the third pair of facets is found. The variations in the nanowire diameter, as well as their tilt and bending, are confirmed by scanning electron microscopy. To explain these findings, material melting due to Joule heating during voltage/current application accompanied by anisotropic deformations induced by the W-probe is suggested.
  • Item
    X-ray diffraction reveals the amount of strain and homogeneity of extremely bent single nanowires
    (Copenhagen : Munksgaard, 2020) Davtyan, Arman; Kriegner, Dominik; Holý, Václav; AlHassan, Ali; Lewis, Ryan B.; McDermott, Spencer; Geelhaar, Lutz; Bahrami, Danial; Anjum, Taseer; Ren, Zhe; Richter, Carsten; Novikov, Dmitri; Müller, Julian; Butz, Benjamin; Pietsch, Ullrich
    Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 μm resulting in strain variation of ∼2.5% in the NW core are found. © 2020.
  • Item
    Exploiting flux shadowing for strain and bending engineering in core-shell nanowires
    (Cambridge : RSC Publ., 2022) Al Humaidi, Mahmoud; Jakob, Julian; Al Hassan, Ali; Davtyan, Arman; Schroth, Philipp; Feigl, Ludwig; Herranz, Jesús; Novikov, Dmitri; Geelhaar, Lutz; Baumbach, Tilo; Pietsch, Ullrich
    Here we report on the non-uniform shell growth of InxGa1−xAs on the GaAs nanowire (NW) core by molecular beam epitaxy (MBE). The growth was realized on pre-patterned silicon substrates with the pitch size (p) ranging from 0.1 μm to 10 μm. Considering the preferable bending direction with respect to the MBE cells as well as the layout of the substrate pattern, we were able to modify the strain distribution along the NW growth axis and the subsequent bending profile. For NW arrays with a high number density, the obtained bending profile of the NWs is composed of straight (barely-strained) and bent (strained) segments with different lengths which depend on the pitch size. A precise control of the bent and straight NW segment length provides a method to design NW based devices with length selective strain distribution.
  • Item
    Protection Mechanism against Photocorrosion of GaN Photoanodes Provided by NiO Thin Layers
    (Weinheim : Wiley-VCH, 2020) Kamimura, Jumpei; Budde, Melanie; Bogdanoff, Peter; Tschammer, Carsten; Abdi, Fatwa F.; van de Krol, Roel; Bierwagen, Oliver; Riechert, Henning; Geelhaar, Lutz
    The photoelectrochemical properties of n-type Ga-polar GaN photoelectrodes covered with NiO layers of different thicknesses in the range 0–20 nm are investigated for aqueous solution. To obtain layers of well-defined thickness and high crystal quality, NiO is grown by plasma-assisted molecular-beam epitaxy. Stability tests reveal that the NiO layers suppress photocorrosion. With increasing NiO thickness, the onset of the photocurrent is shifted to more positive voltages and the photocurrent is reduced, especially for low bias potentials, indicating that hole transfer to the electrolyte interface is hindered by thicker NiO layers. Furthermore, cathodic transient spikes are observed under intermittent illumination, which hints at surface recombination processes. These results are inconsistent with the common explanation of the protection mechanism that the band alignment of GaN/NiO enables efficient hole-injection, thus preventing hole accumulation at the GaN surface that would lead to anodic photocorrosion. Interestingly, the morphology of the etch pits as well as further experiments involving the photodeposition of Ag indicate that photocorrosion of GaN photoanodes is related to reductive processes at threading dislocations. Therefore, it is concluded that the NiO layers block the transfer of photogenerated electrons from GaN to the electrolyte interface, which prevents the cathodic photocorrosion. © 2020 The Authors. Solar RRL published by Wiley-VCH GmbH