Search Results

Now showing 1 - 4 of 4
  • Item
    Phase formation and high-temperature stability of very thin co-sputtered Ti-Al and multilayered Ti/Al films on thermally oxidized si substrates
    (Basel : MDPI AG, 2020) Seifert, M.; Lattner, E.; Menzel, S.B.; Oswald, S.; Gemming, T.
    Ti-Al thin films with a thickness of 200 nm were prepared either by co-sputtering from elemental Ti and Al targets or as Ti/Al multilayers with 10 and 20 nm individual layer thickness on thermally oxidized Si substrates. Some of the films were covered with a 20-nm-thick SiO2 layer, which was used as an oxidation protection against the ambient atmosphere. The films were annealed at up to 800 °C in high vacuum for 10 h, and the phase formation as well as the film architecture was analyzed by X-ray diffraction, cross section, and transmission electron microscopy, as well as Auger electron and X-ray photoelectron spectroscopy. The results reveal that the co-sputtered films remained amorphous after annealing at 600 °C independent on the presence of the SiO2 cover layer. In contrast to this, the γ-TiAl phase was formed in the multilayer films at this temperature. After annealing at 800 °C, all films were degraded completely despite the presence of the cover layer. In addition, a strong chemical reaction between the Ti and SiO2 of the cover layer and the substrate took place, resulting in the formation of Ti silicide. In the multilayer samples, this reaction already started at 600 °C.
  • Item
    Improved kinetic behaviour of Mg(NH2)2-2LiH doped with nanostructured K-modified-LixTiyOz for hydrogen storage
    (London : Nature Publishing Group, 2020) Gizer, G.; Puszkiel, J.; Riglos, M.V.C.; Pistidda, C.; Ramallo-López, J.M.; Mizrahi, M.; Santoru, A.; Gemming, T.; Tseng, J.-C.; Klassen, T.; Dornheim, M.
    The system Mg(NH2)2 + 2LiH is considered as an interesting solid-state hydrogen storage material owing to its low thermodynamic stability of ca. 40 kJ/mol H2 and high gravimetric hydrogen capacity of 5.6 wt.%. However, high kinetic barriers lead to slow absorption/desorption rates even at relatively high temperatures (>180 °C). In this work, we investigate the effects of the addition of K-modified LixTiyOz on the absorption/desorption behaviour of the Mg(NH2)2 + 2LiH system. In comparison with the pristine Mg(NH2)2 + 2LiH, the system containing a tiny amount of nanostructured K-modified LixTiyOz shows enhanced absorption/desorption behaviour. The doped material presents a sensibly reduced (∼30 °C) desorption onset temperature, notably shorter hydrogen absorption/desorption times and reversible hydrogen capacity of about 3 wt.% H2 upon cycling. Studies on the absorption/desorption processes and micro/nanostructural characterizations of the Mg(NH2)2 + 2LiH + K-modified LixTiyOz system hint to the fact that the presence of in situ formed nanostructure K2TiO3 is the main responsible for the observed improved kinetic behaviour.
  • Item
    Additive Manufacturing of Binary Ni–Ti Shape Memory Alloys Using Electron Beam Powder Bed Fusion: Functional Reversibility Through Minor Alloy Modification and Carbide Formation
    ([Cham] : Springer International Publishing, 2022) Krooß, P.; Lauhoff, C.; Gustmann, T.; Gemming, T.; Sobrero, C.; Ewald, F.; Brenne, F.; Arold, T.; Nematolahi, M.; Elahinia, M.; Thielsch, J.; Hufenbach, J.; Niendorf, T.
    Shape memory alloys (SMAs), such as Ni–Ti, are promising candidates for actuation and damping applications. Although processing of Ni–Ti bulk materials is challenging, well-established processing routes (i.e. casting, forging, wire drawing, laser cutting) enabled application in several niche applications, e.g. in the medical sector. Additive manufacturing, also referred to as 4D-printing in this case, is known to be highly interesting for the fabrication of SMAs in order to produce near-net-shaped actuators and dampers. The present study investigated the impact of electron beam powder bed fusion (PBF-EB/M) on the functional properties of C-rich Ni50.9Ti49.1 alloy. The results revealed a significant loss of Ni during PBF-EB/M processing. Process microstructure property relationships are discussed in view of the applied master alloy and powder processing route, i.e. vacuum induction-melting inert gas atomization (VIGA). Relatively high amounts of TiC, being already present in the master alloy and powder feedstock, are finely dispersed in the matrix upon PBF-EB/M. This leads to a local change in the chemical composition (depletion of Ti) and a pronounced shift of the transformation temperatures. Despite the high TiC content, superelastic testing revealed a good shape recovery and, thus, a negligible degradation in both, the as-built and the heat-treated state.
  • Item
    Calcite incorporated in silica/collagen xerogels mediates calcium release and enhances osteoblast proliferation and differentiation
    (London : Nature Publishing Group, 2020) Rößler, S.; Unbehau, R.; Gemming, T.; Kruppke, B.; Wiesmann, H.-P.; Hanke, T.
    Multiphasic silica/collagen xerogels are biomaterials designed for bone regeneration. Biphasic silica/collagen xerogels (B30) and triphasic xerogels (B30H20 or B30CK20) additionally containing hydroxyapatite or calcite were demonstrated to exhibit several structural levels. On the first level, low fibrillar collagen serves as template for silica nanoparticle agglomerates. On second level, this silica-enriched matrix phase is fiber-reinforced by collagen fibrils. In case of hydroxyapatite incorporation in B30H20, resulting xerogels exhibit a hydroxyapatite-enriched phase consisting of hydroxyapatite particle agglomerates next to silica and low fibrillar collagen. Calcite in B30CK20 is incorporated as single non-agglomerated crystal into the silica/collagen matrix phase with embedded collagen fibrils. Both the structure of multiphasic xerogels and the manner of hydroxyapatite or calcite incorporation have an influence on the release of calcium from the xerogels. B30CK20 released a significantly higher amount of calcium into a calcium-free solution over a three-week period than B30H20. In calcium containing incubation media, all xerogels caused a decrease in calcium concentration as a result of their bioactivity, which was superimposed by the calcium release for B30CK20 and B30H20. Proliferation of human bone marrow stromal cells in direct contact to the materials was enhanced on B30CK20 compared to cells on both plain B30 and B30H20.