Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Tungsten as a chemically-stable electrode material on Ga-containing piezoelectric substrates langasite and catangasite for high-temperature saw devices

2016, Rane, Gayatri K., Seifert, Marietta, Menzel, Siegfried, Gemming, Thomas, Eckert, Jürgen

Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS) and Ca3TaGa3Si2O14 (CTGS) have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.

Loading...
Thumbnail Image
Item

Capability study of Ti, Cr, W, Ta and Pt as seed layers for electrodeposited platinum films on γ-Al2O3 for high temperature and harsh environment applications

2017, Seifert, Marietta, Brachmann, Erik, Rane, Gayatri K., Menzel, Siegfried B., Gemming, Thomas

High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘ C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate.

Loading...
Thumbnail Image
Item

Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

2016, Körner, Julia, Reiche, Christopher F., Gemming, Thomas, Büchner, Bernd, Gerlach, Gerald, Mühl, Thomas

Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup.

Loading...
Thumbnail Image
Item

In-situ quasi-instantaneous e-beam driven catalyst-free formation of crystalline aluminum borate nanowires

2016, Gonzalez-Martinez, Ignacio G., Gemming, Thomas, Mendes, Rafael, Bachmatiuk, Alicja, Bezugly, Viktor, Kunstmann, Jens, Eckert, Jürgen, Cuniberti, Gianaurelio, Rümmeli, Mark H.

The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.

Loading...
Thumbnail Image
Item

Evaluation of surface cleaning procedures for CTGS substrates for SAW technology with XPS

2017, Brachmann, Erik, Seifert, Marietta, Oswald, Steffen, Menzel, Siegfried B., Gemming, Thomas

A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW) technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.

Loading...
Thumbnail Image
Item

Production of porous β-Type Ti–40Nb alloy for biomedical applications: Comparison of selective laser melting and hot pressing

2013, Zhuravleva, Ksenia, Bönisch, Matthias, Prashanth, Konda Gokuldoss, Hempel, Ute, Helth, Arne, Gemming, Thomas, Calin, Mariana, Scudino, Sergio, Schultz, Ludwig, Eckert, Jürgen, Gebert, Annett

We used selective laser melting (SLM) and hot pressing of mechanically-alloyed β-type Ti–40Nb powder to fabricate macroporous bulk specimens (solid cylinders). The total porosity, compressive strength, and compressive elastic modulus of the SLM-fabricated material were determined as 17% ± 1%, 968 ± 8 MPa, and 33 ± 2 GPa, respectively. The alloy’s elastic modulus is comparable to that of healthy cancellous bone. The comparable results for the hot-pressed material were 3% ± 2%, 1400 ± 19 MPa, and 77 ± 3 GPa. This difference in mechanical properties results from different porosity and phase composition of the two alloys. Both SLM-fabricated and hot-pressed cylinders demonstrated good in vitro biocompatibility. The presented results suggest that the SLM-fabricated alloy may be preferable to the hot-pressed alloy for biomedical applications, such as the manufacture of load-bearing metallic components for total joint replacements.

Loading...
Thumbnail Image
Item

Functionalization of Ti-40Nb implant material with strontium by reactive sputtering

2017-10-10, Göttlicher, Markus, Rohnke, Marcus, Moryson, Yannik, Thomas, Jürgen, Sann, Joachim, Lode, Anja, Schumacher, Matthias, Schmidt, Romy, Pilz, Stefan, Gebert, Annett, Gemming, Thomas, Janek, Jürgen

Background: Surface functionalization of orthopedic implants with pharmaceutically active agents is a modern approach to enhance osseointegration in systemically altered bone. A local release of strontium, a verified bone building therapeutic agent, at the fracture site would diminish side effects, which could occur otherwise by oral administration. Strontium surface functionalization of specially designed titanium-niobium (Ti-40Nb) implant alloy would provide an advanced implant system that is mechanically adapted to altered bone with the ability to stimulate bone formation. Methods: Strontium-containing coatings were prepared by reactive sputtering of strontium chloride (SrCl2) in a self-constructed capacitively coupled radio frequency (RF) plasma reactor. Film morphology, structure and composition were investigated by scanning electron microscopy (SEM), time of flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). High-resolution transmission electron microscopy (HR-TEM) was used for the investigation of thickness and growth direction of the product layer. TEM lamellae were prepared using the focused ion beam (FIB) technique. Bioactivity of the surface coatings was tested by cultivation of primary human osteoblasts and subsequent analysis of cell morphology, viability, proliferation and differentiation. The results are correlated with the amount of strontium that is released from the coating in biomedical buffer solution, quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results: Dense coatings, consisting of SrOxCly, of more than 100 nm thickness and columnar structure, were prepared. TEM images of cross sections clearly show an incoherent but well-structured interface between coating and substrate without any cracks. Sr2+ is released from the SrOxCly coating into physiological solution as proven by ICP-MS analysis. Cell culture studies showed excellent biocompatibility of the functionalized alloy. Conclusions: Ti-40Nb alloy, a potential orthopedic implant material for osteoporosis patients, could be successfully plasma coated with a dense SrOxCly film. The material performed well in in vitro tests. Nevertheless, the Sr2+ release must be optimized in future work to meet the requirements of an effective drug delivery system.

Loading...
Thumbnail Image
Item

Surface effects and challenges for application of piezoelectric langasite substrates in surface acoustic wave devices caused by high temperature annealing under high vacuum

2015, Seifert, Marietta, Rane, Gayatri K., Kirbus, Benjamin, Menzel, Siegfried B., Gemming, Thomas

Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 ) substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

Loading...
Thumbnail Image
Item

Twinned growth behaviour of two-dimensional materials

2016, Zhang, Tao, Jiang, Bei, Xu, Zhen, Mendes, Rafael G., Xiao, Yao, Chen, Linfeng, Fang, Liwen, Gemming, Thomas, Chen, Shengli, Rümmeli, Mark H., Fu, Lei

Twinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS2/WS2 vertical heterostructure. Moreover, the crystal size of the stacked structure is an order of magnitude larger than previous reports. Such twinned transition metal dichalcogenides vertical heterostructures exhibit great potential for use in optical, electronic and catalytic applications. The simplicity of the twinned growth can be utilized to expand the fabrication of other heterostructures or two-dimensional material superlattice and this strategy can be considered as an enabling technology for research in the emerging field of two-dimensional van der Waals heterostructures.

Loading...
Thumbnail Image
Item

Nano-inspired fluidic interactivity for boiling heat transfer: Impact and criteria

2016, Kim, Beom Seok, Choi, Geehong, Shin, Sangwoo, Gemming, Thomas, Cho, Hyung Hee

The enhancement of boiling heat transfer, the most powerful energy-transferring technology, will lead to milestones in the development of high-efficiency, next-generation energy systems. Perceiving nano-inspired interface functionalities from their rough morphologies, we demonstrate interface-induced liquid refreshing is essential to improve heat transfer by intrinsically avoiding Leidenfrost phenomenon. High liquid accessibility of hemi-wicking and catalytic nucleation, triggered by the morphological and hydrodynamic peculiarities of nano-inspired interfaces, contribute to the critical heat flux (CHF) and the heat transfer coefficient (HTC). Our experiments show CHF is a function of universal hydrodynamic characteristics involving interfacial liquid accessibility and HTC is improved with a higher probability of smaller nuclei with less superheat. Considering the interface-induced and bulk liquid accessibility at boiling, we discuss functionalizing the interactivity between an interface and a counteracting fluid seeking to create a novel interface, a so-called smart interface, for a breakthrough in boiling and its pragmatic application in energy systems.