Search Results

Now showing 1 - 2 of 2
  • Item
    Study of TiAl thin films on piezoelectric CTGS substrates as an alternative metallization system for high-temperature SAW devices
    (Rio de Janeiro : Elsevier, 2021) Seifert, Marietta; Lattner, Eric; Menzel, Siegfried B.; Oswald, Steffen; Gemming, Thomas
    Ti/Al multilayer films with a total thickness of 200 nm were deposited on the high-temperature (HT) stable piezoelectric Ca3TaGa3Si2O14 (CTGS) as well as on thermally oxidized Si (SiO2/Si) reference substrates. The Ti–Al films were characterized regarding their suitability as an alternative metallization for electrodes in HT surface acoustic wave devices. These films provide the advantage of significantly lower costs and in addition also a significantly lower density as compared to Pt, which allows a greater flexibility in device design. To realize a thermal stability of the films, AlNO cover as well as barrier layers at the interface to the substrate were applied. The samples were annealed for 10 h at up to 800 °C in high vacuum (HV) and at 600 °C in air and analyzed regarding the γ-TiAl phase formation, film morphology, and possible degradation. The Ti/Al films were prepared either by magnetron sputtering or by e-beam evaporation and the different behavior arising from the different deposition method was analyzed and discussed. For the evaporated Ti/Al films, AlNO barriers with a lower O content were used to evaluate the influence of the composition of the AlNO on the HT stability. The sputter-deposited Ti/Al films showed an improved γ-TiAl phase formation and HT stability (on SiO2/Si up to 800 °C in HV and 600 °C in air, on CTGS with a slight oxidation after annealing at 800 °C in HV) as compared to the evaporated samples, which were only stable up to 600 °C in HV and in air.
  • Item
    Long-term high-temperature behavior of Ti–Al based electrodes for surface acoustic wave devices
    (Rio de Janeiro : Elsevier, 2022) Seifert, Marietta; Leszczynska, Barbara; Menzel, Siegfried; Gemming, Thomas
    The long-term high-temperature behavior of Ti–Al based electrodes for the application in surface acoustic wave (SAW) sensor devices was analyzed. The electrodes were obtained by e-beam evaporation of Ti/Al multilayers on the high-temperature stable piezoelectric Ca3TaGa3Si2O14 (CTGS) substrates and structuring via the lift-off process. AlNO (25 at.% Al; 60 at.% N and 15 at.% O) cover and barrier layers were applied as protection against oxidation from the surrounding atmosphere and to prohibit a chemical reaction with the substrate. The samples were annealed at temperatures up to 600 °C in air for a duration of up to 192 h. Scanning and transmission electron microscopy were used to evaluate the morphology and degradation of the electrodes as well as of the extended contact pads. The results revealed that the Ti–Al based electrodes remained unoxidized after annealing for 192 h at 400 and 500 °C and for 24 h at 600 °C. After the heat treatment for 192 h at 600 °C, a strong oxidation of the structured electrodes occurred, which was less pronounced within the pads. In summary, the investigation showed that Ti–Al based SAW devices are a cost efficient alternative for long-term applications up to at least 500 °C and short- and medium-term applications up to 600 °C.