Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Capability study of Ti, Cr, W, Ta and Pt as seed layers for electrodeposited platinum films on γ-Al2O3 for high temperature and harsh environment applications

2017, Seifert, Marietta, Brachmann, Erik, Rane, Gayatri K., Menzel, Siegfried B., Gemming, Thomas

High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 ∘ C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate.

Loading...
Thumbnail Image
Item

The Influence of the Composition of Ru100−xAlx (x = 50, 55, 60, 67) Thin Films on Their Thermal Stability

2017-3-10, Seifert, Marietta, Rane, Gayatri K., Oswald, Steffen, Menzel, Siegfried B., Gemming, Thomas

RuAl thin films possess a high potential as a high temperature stable metallization for surface acoustic wave devices. During the annealing process of the Ru-Al films, Al2O3 is formed at the surface of the films even under high vacuum conditions, so that the composition of a deposited Ru50Al50 film is shifted to a Ru-rich alloy. To compensate for this effect, the Al content is systematically increased during the deposition of the Ru-Al films. Three Al-rich alloys—Ru45Al55, Ru40Al60 and Ru33Al67—were analyzed concerning their behavior after high temperature treatment under high vacuum and air conditions in comparison to the initial Ru50Al50 sample. Although the films’ cross sections show a more homogeneous structure in the case of the Al-rich films, the RuAl phase formation is reduced with increasing Al content.