2 results
Search Results
Now showing 1 - 2 of 2
- ItemLarge-Area Single-Crystal Graphene via Self-Organization at the Macroscale(Weinheim : Wiley-VCH, 2020) Ta, Huy Quang; Bachmatiuk, Alicja; Mendes, Rafael Gregorio; Perello, David J.; Zhao, Liang; Trzebicka, Barbara; Gemming, Thomas; Rotkin, Slava V.; Rümmeli, Mark H.In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize. It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale. © 2020 The Authors. Published by Wiley-VCH GmbH
- ItemBoosting flexible electronics with integration of two-dimensional materials(Weinheim : Wiley, 2024) Hou, Chongyang; Zhang, Shuye; Liu, Rui; Gemming, Thomas; Bachmatiuk, Alicja; Zhao, Hongbin; Jia, Hao; Huang, Shirong; Zhou, Weijia; Xu, Jian‐Bin; Pang, Jinbo; Rümmeli, Mark H.; Bi, Jinshun; Liu, Hong; Cuniberti, GianaurelioFlexible electronics has emerged as a continuously growing field of study. Two-dimensional (2D) materials often act as conductors and electrodes in electronic devices, holding significant promise in the design of high-performance, flexible electronics. Numerous studies have focused on harnessing the potential of these materials for the development of such devices. However, to date, the incorporation of 2D materials in flexible electronics has rarely been summarized or reviewed. Consequently, there is an urgent need to develop comprehensive reviews for rapid updates on this evolving landscape. This review covers progress in complex material architectures based on 2D materials, including interfaces, heterostructures, and 2D/polymer composites. Additionally, it explores flexible and wearable energy storage and conversion, display and touch technologies, and biomedical applications, together with integrated design solutions. Although the pursuit of high-performance and high-sensitivity instruments remains a primary objective, the integrated design of flexible electronics with 2D materials also warrants consideration. By combining multiple functionalities into a singular device, augmented by machine learning and algorithms, we can potentially surpass the performance of existing wearable technologies. Finally, we briefly discuss the future trajectory of this burgeoning field. This review discusses the recent advancements in flexible sensors made from 2D materials and their applications in integrated architecture and device design.