Search Results

Now showing 1 - 2 of 2
  • Item
    Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar
    (München : European Geopyhsical Union, 2008) Gerding, M.; Höffner, J.; Lautenbach, J.; Rauthe, M.; Lübken, F.-J.
    Temperature soundings are performed by lidar at the mid-latitude station of Kühlungsborn (Germany, 54° N, 12° E). The profiles cover the complete range from the lower troposphere (~1 km) to the lower thermosphere (~105 km) by simultaneous and co-located operation of a Rayleigh-Mie-Raman lidar and a potassium resonance lidar. Observations have been done during 266 nights between June 2002 and July 2007, each of 3–15 h length. This large and unique data set provides comprehensive information on the altitudinal and seasonal variation of temperatures from the troposphere to the lower thermosphere. The remaining day-to-day-variability is strongly reduced by harmonic fits at constant altitude levels and a representative data set is achieved. This data set reveals a two-level mesopause structure with an altitude of about 86–87 km (~144 K) in summer and ~102 km (~170 K) during the rest of the year. The average stratopause altitude is ~48 km throughout the whole year, with temperatures varying between 258 and 276 K. From the fit parameters amplitudes and phases of annual, semi-annual, and quarter-annual variations are derived. The amplitude of the annual component is largest with amplitudes of up to 30 K in 85 km, while the quarter-annual variation is smallest and less than 3 K at all altitudes. The lidar data set is compared with ECMWF temperatures below about 70 km altitude and reference data from the NRLMSISE-00 model above. Apart from the temperature soundings the aerosol backscatter ratio is measured between 20 and 35 km. The seasonal variation of these values is presented here for the first time.
  • Item
    Comparing turbulent parameters obtained from LITOS and radiosonde measurements
    (München : European Geopyhsical Union, 2015) Schneider, A.; Gerding, M.; Lübken, F.-J.
    Stratospheric turbulence is important for the mixing of trace species and the energy balance, but direct measurements are sparse due to the required resolution and accuracy. Recently, turbulence parameters such as the energy dissipation rate ε were inferred from standard radiosonde data by means of a Thorpe analysis. To this end, layers with vertically decreasing potential temperature are analysed, which is expected to indicate turbulence. Such an application assumes a proportionality between the Thorpe length LT and the Ozmidov scale LO. While this relation is accepted for the ocean, experimental evidence for such proportionality in the stratosphere is sparse. We have developed a high-resolution (8 kHz) turbulence measurement system called LITOS (Leibniz Institute Turbulence Observations in the Stratosphere), which for the first time resolves the inner scale of turbulence in the stratosphere. Therewith the energy dissipation rate ε can be determined by spectral analysis. This independent value for ε enables us to check the relation LO ∝ LT. In our measurements no such proportionality can be seen, although the mean of the ratio LO/LT is close to what is assumed in radiosonde analyses. Dissipation rates for individual layers obtained from radiosondes deviate up to a factor of ~3000 from those obtained by spectral analysis. Some turbulent layers measured by LITOS are not observed by the radiosonde at all, and vice versa. However, statements about the statistical mean seem to be possible by Thorpe analysis.