Search Results

Now showing 1 - 2 of 2
  • Item
    Evaluation of wake influence on high-resolution balloon-sonde measurements
    (Göttingen : Copernicus GmbH, 2019) Söder, J.; Gerding, M.; Schneider, A.; Dörnbrack, A.; Wilms, H.; Wagner, J.; Lübken, F.-J.
    Balloons are used for various in situ measurements in the atmosphere. On turbulence measurements from rising balloons there is a potential for misinterpreting wake-created fluctuations in the trail of the balloon for atmospheric turbulence. These wake effects have an influence on temperature and humidity measurements from radiosondes as well. The primary aim of this study is to assess the likelihood for wake encounter on the payload below a rising balloon. Therefore, we present a tool for calculating this probability based on radiosonde wind data. This includes a retrieval of vertical winds from the radiosonde and an uncertainty analysis of the wake assessment. Our wake evaluation tool may be used for any balloon-gondola distance and provides a significant refinement compared to existing assessments. We have analysed wake effects for various balloon-gondola distances applying atmospheric background conditions from a set of 30 radiosondes. For a standard radiosonde we find an average probability for wake encounter of 28 %, pointing out the importance of estimating wake effects on sounding balloons. Furthermore, we find that even millimetre-sized objects in the payload can have significant effects on high-resolution turbulence measurements, if they are located upstream of the turbulence sensor. © Author(s) 2019. This work is distributed under.
  • Item
    Simultaneous observations of NLCs and MSEs at midlatitudes: Implications for formation and advection of ice particles
    (Göttingen : Copernicus GmbH, 2018) Gerding, M.; Zöllner, J.; Zecha, M.; Baumgarten, K.; Höffner, J.; Stober, G.; Lübken, F.-J.
    We combined ground-based lidar observations of noctilucent clouds (NLCs) with collocated, simultaneous radar observations of mesospheric summer echoes (MSEs) in order to compare ice cloud altitudes at a midlatitude site (Kühlungsborn, Germany, 54° N, 12° E). Lidar observations are limited to larger particles ( > 10 nm), while radars are also sensitive to small particles ( < 10 nm), but require sufficient ionization and turbulence at the ice cloud altitudes. The combined lidar and radar data set thus includes some information on the size distribution within the cloud and through this on the of the cloud. The soundings for this study are carried out by the IAP Rayleigh-Mie-Raman (RMR) lidar and the OSWIN VHF radar. On average, there is no difference between the lower edges (lowNLC and lowMSE). The mean difference of the upper edges upNLC and upMSE is g1/4 500 m, which is much less than expected from observations at higher latitudes. In contrast to high latitudes, the MSEs above our location typically do not reach much higher than the NLCs. In addition to earlier studies from our site, this gives additional evidence for the supposition that clouds containing large enough particles to be observed by lidar are not formed locally but are advected from higher latitudes. During the advection process, the smaller particles in the upper part of the cloud either grow and sediment, or they sublimate. Both processes result in a thinning of the layer. High-altitude MSEs, usually indicating nucleation of ice particles, are rarely observed in conjunction with lidar observations of NLCs at Kühlungsborn. © Author(s) 2018.