Search Results

Now showing 1 - 2 of 2
  • Item
    A Complementary and Revised View on the N-Acylation of Chitosan with Hexanoyl Chloride
    (Basel : MDPI, 2021) Reis, Berthold; Gerlach, Niklas; Steinbach, Christine; Haro Carrasco, Karina; Oelmann, Marina; Schwarz, Simona; Müller, Martin; Schwarz, Dana
    The modification of the biobased polymer chitosan is a broad and widely studied field. Herein, an insight into the hydrophobization of low-molecular-weight chitosan by substitution of amino functionalities with hexanoyl chloride is reported. Thereby, the influence of the pH of the reaction media was investigated. Further, methods for the determination of the degree of substitution based on 1H-NMR, FTIR, and potentiometric titration were compared and discussed regarding their accuracy and precision. 1H-NMR was the most accurate method, while FTIR and the potentiometric titration, though precise and reproducible, underlie the influence of complete protonation and solubility issues. Additionally, the impact of the pH variation during the synthesis on the properties of the samples was investigated by Cd2+ sorption experiments. The adjusted pH values during the synthesis and, therefore, the obtained degrees of substitution possessed a strong impact on the adsorption properties of the final material.
  • Item
    Waterborne phenolic, triazine-based porous polymer particles for the removal of toxic metal ions
    (Amsterdam : Elsevier, 2022) Borchert, Konstantin B.L.; Frenzel, Robert; Gerlach, Niklas; Reis, Berthold; Steinbach, Christine; Kohn, Benjamin; Scheler, Ulrich; Schwarz, Simona; Schwarz, Dana
    Highly functional and also highly porous materials are presenting great advantages for applications in energy storage, catalysis and separation processes, which is why a continuous development of new materials can be seen. To create a material combining the promising potential interactions of triazine groups with the electrostatic or hydrogen bonding interactions of phenolic groups, a completely new polymeric resin was synthesized. From an eco-friendly dispersion polymerization in water, a copolymer network was obtained, which includes nine hydroxyl groups and one s-triazine ring per repetition unit. The polymer forms highly porous particles with specific surface areas up to 531 ​m2/g and a negative streaming potential over a great pH range. The adsorption isotherms of Ni2+, Cd2+, and Pb2+ were studied in more detail achieving very good adsorption capacities (16 mg Ni2+/g, 24 mg Cd2+/g, and 90 mg Pb2+/g). Demonstrating excellent properties for adsorption applications. The adsorbent exhibited selectivity for the adsorption of Pb2+ over more commonly occurring but non-toxic metal ions such as Fe2+, Ca2+, Mg2+, and K+. Furthermore, reusability of the material was demonstrated by facile, quantitative desorption of adsorbed Pb2+ with a small amount of diluted HCl, circumventing organic chelators. Subsequently, adsorption was carried out without decrease in adsorption performance.