Search Results

Now showing 1 - 5 of 5
  • Item
    Gas Flow Shaping via Novel Modular Nozzle System (MoNoS) Augments kINPen-Mediated Toxicity and Immunogenicity in Tumor Organoids
    (Basel : MDPI, 2023) Berner, Julia; Miebach, Lea; Herold, Luise; Höft, Hans; Gerling, Torsten; Mattern, Philipp; Bekeschus, Sander
    Medical gas plasma is an experimental technology for anticancer therapy. Here, partial gas ionization yielded reactive oxygen and nitrogen species, placing the technique at the heart of applied redox biomedicine. Especially with the gas plasma jet kINPen, anti-tumor efficacy was demonstrated. This study aimed to examine the potential of using passive flow shaping to enhance the medical benefits of atmospheric plasma jets (APPJ). We used an in-house developed, proprietary Modular Nozzle System (MoNoS; patent-pending) to modify the flow properties of a kINPen. MoNoS increased the nominal plasma jet-derived reactive species deposition area and stabilized the air-plasma ratio within the active plasma zone while shielding it from external flow disturbances or gas impurities. At modest flow rates, dynamic pressure reduction (DPR) adapters did not augment reactive species deposition in liquids or tumor cell killing. However, MoNoS operated at kINPen standard argon fluxes significantly improved cancer organoid growth reduction and increased tumor immunogenicity, as seen by elevated calreticulin and heat-shock protein expression, along with a significantly spurred cytokine secretion profile. Moreover, the safe application of MoNoS gas plasma jet adapters was confirmed by their similar-to-superior safety profiles assessed in the hen’s egg chorioallantoic membrane (HET-CAM) coagulation and scar formation irritation assay.
  • Item
    Concept for improved handling ensures effective contactless plasma treatment of patients with kINPen® MED
    (Basel : MDPI, 2020) Hahn, Veronika; Grollmisch, Daniel; Bendt, Hannes; Woedtke, Thomas von; Nestler, Bodo; Weltmann, Klaus-Dieter; Gerling, Torsten
    The nursing of patients with wounds is an essential part of medical healthcare. In this context, cold atmospheric-pressure plasma sources can be applied for skin decontamination and stimulation of wound healing. One of these plasma devices is the commercially available kINPen® MED (neoplas tools GmbH), a cold atmospheric-pressure plasma jet which is approved as a medical device, class-IIa. For the plasma treatment, a sterile disposable spacer is recommended to ensure a constant and effective distance between plasma and skin. The disadvantage of this spacer is its form and size which means that the effective axis/area is not visible for the attending doctor or qualified personnel and consequently it is a more or less intuitive treatment. In addition, the suggested perpendicular treatment is not applicable for the attending specialist due to lack of space or patient/wound positioning. A concept of a sensory unit was developed to measure the treatment distance and to visualize the effective treatment area for different angles. To determine the effective area for the plasma treatment, some exemplary methods were performed. Thus, the antimicrobial (Staphylococcus aureus DSM799/ATCC6538) efficacy, reactive oxygen species (ROS) distribution and (vacuum) ultraviolet ((V)UV) irradiation were determined depending on the treatment angle. Finally, a simplified first approach to visualize the effective treatment area at an optimal distance was designed and constructed to train attending specialists for optimal wound area coverage. © 2020 by the authors.
  • Item
    Cold Atmospheric Pressure Plasma Jet Operated in Ar and He: From Basic Plasma Properties to Vacuum Ultraviolet, Electric Field and Safety Thresholds Measurements in Plasma Medicine
    (Basel : MDPI, 2022) Nastuta, Andrei Vasile; Gerling, Torsten
    Application desired functionality as well as operation expenses of cold atmospheric pressure plasma (CAP) devices scale with properties like gas selection. The present contribution provides a comparative investigation for a CAP system operated in argon or helium at different operation voltages and distance to the surface. Comparison of power dissipation, electrical field strength and optical emission spectroscopy from vacuum ultraviolet over visible up to near infrared ((V)UV-VIS-NIR) spectral range is carried out. This study is extended to safety relevant investigation of patient leakage current, induced surface temperature and species density for ozone (O3) and nitrogen oxides (NOx). It is found that in identical operation conditions (applied voltage, distance to surface and gas flow rate) the dissipated plasma power is about equal (up to 10 W), but the electrical field strength differs, having peak values of 320 kV/m for Ar and up to 300 kV/m for He. However, only for Ar CAP could we measure O3 up to 2 ppm and NOx up to 7 ppm. The surface temperature and leakage values of both systems showed different slopes, with the biggest surprise being a constant leakage current over distance for argon. These findings may open a new direction in the plasma source development for Plasma Medicine.
  • Item
    Plasma-activation of larger liquid volumes by an inductively-limited discharge for antimicrobial purposes
    (Basel : MDPI, 2019) Schmidt, Michael; Hahn, Veronika; Altrock, Beke; Gerling, Torsten; Gerber, Ioana Cristina; Weltmann, Klaus-Dieter; von Woedtke, Thomas
    A new configuration of a discharge chamber and power source for the treatment of up to 1 L of liquid is presented. A leakage transformer, energizing two metal electrodes positioned above the liquid, limits the discharge current inductively by utilizing the weak magnetic coupling between the primary and secondary coils. No additional means to avoid arcing (electric short-circuiting), e.g., dielectric barriers or resistors, are needed. By using this technique, exceeding the breakdown voltage leads to the formation of transient spark discharges, producing non-thermal plasma (NTP). These discharges effected significant changes in the properties of the treated liquids (distilled water, physiological saline solution, and tap water). Considerable concentrations of nitrite and nitrate were detected after the plasma treatment. Furthermore, all tested liquids gained strong antibacterial efficacy which was shown by inactivating suspended Escherichia coli and Staphylococcus aureus. Plasma-treated tap water had the strongest effect, which is shown for the first time. Additionally, the pH-value of tap water did not decrease during the plasma treatment, and its conductivity increased less than for the other tested liquids. © 2019 by the authors.
  • Item
    Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices
    (Basel : MDPI, 2022) Chaerony Siffa, Ihda; Gerling, Torsten; Masur, Kai; Eschenburg, Christian; Starkowski, Frank; Emmert, Steffen
    The emerging use of low-temperature plasma in medicine, especially in wound treatment, calls for a better way of documenting the treatment parameters. This paper describes the development of a mobile sensory device (referred to as MSD) that can be used during the treatment to ease the documentation of important parameters in a streamlined process. These parameters include the patient’s general information, plasma source device used in the treatment, plasma treatment time, ambient humidity and temperature. MSD was developed as a standalone Raspberry Pi-based version and attachable module version for laptops and tablets. Both versions feature a user-friendly GUI, temperature–humidity sensor, microphone, treatment report generation and export. For the logging of plasma treatment time, a sound-based plasma detection system was developed, initially for three medically certified plasma source devices: kINPen® MED, plasma care®, and PlasmaDerm® Flex. Experimental validation of the developed detection system shows accurate and reliable detection is achievable at 5 cm measurement distance in quiet and noisy environments for all devices. All in all, the developed tool is a first step to a more automated, integrated, and streamlined approach of plasma treatment documentation that can help prevent user variability.