Search Results

Now showing 1 - 2 of 2
  • Item
    Gas Flow Shaping via Novel Modular Nozzle System (MoNoS) Augments kINPen-Mediated Toxicity and Immunogenicity in Tumor Organoids
    (Basel : MDPI, 2023) Berner, Julia; Miebach, Lea; Herold, Luise; Höft, Hans; Gerling, Torsten; Mattern, Philipp; Bekeschus, Sander
    Medical gas plasma is an experimental technology for anticancer therapy. Here, partial gas ionization yielded reactive oxygen and nitrogen species, placing the technique at the heart of applied redox biomedicine. Especially with the gas plasma jet kINPen, anti-tumor efficacy was demonstrated. This study aimed to examine the potential of using passive flow shaping to enhance the medical benefits of atmospheric plasma jets (APPJ). We used an in-house developed, proprietary Modular Nozzle System (MoNoS; patent-pending) to modify the flow properties of a kINPen. MoNoS increased the nominal plasma jet-derived reactive species deposition area and stabilized the air-plasma ratio within the active plasma zone while shielding it from external flow disturbances or gas impurities. At modest flow rates, dynamic pressure reduction (DPR) adapters did not augment reactive species deposition in liquids or tumor cell killing. However, MoNoS operated at kINPen standard argon fluxes significantly improved cancer organoid growth reduction and increased tumor immunogenicity, as seen by elevated calreticulin and heat-shock protein expression, along with a significantly spurred cytokine secretion profile. Moreover, the safe application of MoNoS gas plasma jet adapters was confirmed by their similar-to-superior safety profiles assessed in the hen’s egg chorioallantoic membrane (HET-CAM) coagulation and scar formation irritation assay.
  • Item
    Cold Atmospheric Pressure Plasma Jet Operated in Ar and He: From Basic Plasma Properties to Vacuum Ultraviolet, Electric Field and Safety Thresholds Measurements in Plasma Medicine
    (Basel : MDPI, 2022) Nastuta, Andrei Vasile; Gerling, Torsten
    Application desired functionality as well as operation expenses of cold atmospheric pressure plasma (CAP) devices scale with properties like gas selection. The present contribution provides a comparative investigation for a CAP system operated in argon or helium at different operation voltages and distance to the surface. Comparison of power dissipation, electrical field strength and optical emission spectroscopy from vacuum ultraviolet over visible up to near infrared ((V)UV-VIS-NIR) spectral range is carried out. This study is extended to safety relevant investigation of patient leakage current, induced surface temperature and species density for ozone (O3) and nitrogen oxides (NOx). It is found that in identical operation conditions (applied voltage, distance to surface and gas flow rate) the dissipated plasma power is about equal (up to 10 W), but the electrical field strength differs, having peak values of 320 kV/m for Ar and up to 300 kV/m for He. However, only for Ar CAP could we measure O3 up to 2 ppm and NOx up to 7 ppm. The surface temperature and leakage values of both systems showed different slopes, with the biggest surprise being a constant leakage current over distance for argon. These findings may open a new direction in the plasma source development for Plasma Medicine.