Search Results

Now showing 1 - 3 of 3
  • Item
    A vital link: Water and vegetation in the anthropocene
    (Chichester : John Wiley and Sons Ltd, 2013) Gerten, D.
    This paper argues that the interplay of water, carbon and vegetation dynamics fundamentally links some global trends in the current and conceivable future Anthropocene, such as cropland expansion, freshwater use, and climate change and its impacts. Based on a review of recent literature including geographically explicit simulation studies with the process-based LPJmL global biosphere model, it demonstrates that the connectivity of water and vegetation dynamics is vital for water security, food security and (terrestrial) ecosystem dynamics alike. The water limitation of net primary production of both natural and agricultural plants - already pronounced in many regions - is shown to increase in many places under projected climate change, though this development is partially offset by water-saving direct CO2 effects. Natural vegetation can to some degree adapt dynamically to higher water limitation, but agricultural crops usually require some form of active management to overcome it - among them irrigation, soil conservation and eventually shifts of cropland to areas that are less water-limited due to more favourable climatic conditions. While crucial to secure food production for a growing world population, such human interventions in water-vegetation systems have, as also shown, repercussions on the water cycle. Indeed, land use changes are shown to be the second-most important influence on the terrestrial water balance in recent times. Furthermore, climate change (warming and precipitation changes) will in many regions increase irrigation demand and decrease water availability, impeding rainfed and irrigated food production (if not CO2 effects counterbalance this impact - which is unlikely at least in poorly managed systems). Drawing from these exemplary investigations, some research perspectives on how to further improve our knowledge of human-water-vegetation interactions in the Anthropocene are outlined.
  • Item
    Reconstruction of global gridded monthly sectoral water withdrawals for 1971-2010 and analysis of their spatiotemporal patterns
    (Göttingen : Copernicus GmbH, 2018) Huang, Z.; Hejazi, M.; Li, X.; Tang, Q.; Vernon, C.; Leng, G.; Liu, Y.; Döll, P.; Eisner, S.; Gerten, D.; Hanasaki, N.; Wada, Y.
    Human water withdrawal has increasingly altered the global water cycle in past decades, yet our understanding of its driving forces and patterns is limited. Reported historical estimates of sectoral water withdrawals are often sparse and incomplete, mainly restricted to water withdrawal estimates available at annual and country scales, due to a lack of observations at seasonal and local scales. In this study, through collecting and consolidating various sources of reported data and developing spatial and temporal statistical downscaling algorithms, we reconstruct a global monthly gridded (0.5°) sectoral water withdrawal dataset for the period 1971-2010, which distinguishes six water use sectors, i.e., irrigation, domestic, electricity generation (cooling of thermal power plants), livestock, mining, and manufacturing. Based on the reconstructed dataset, the spatial and temporal patterns of historical water withdrawal are analyzed. Results show that total global water withdrawal has increased significantly during 1971-2010, mainly driven by the increase in irrigation water withdrawal. Regions with high water withdrawal are those densely populated or with large irrigated cropland production, e.g., the United States (US), eastern China, India, and Europe. Seasonally, irrigation water withdrawal in summer for the major crops contributes a large percentage of total annual irrigation water withdrawal in mid- and high-latitude regions, and the dominant season of irrigation water withdrawal is also different across regions. Domestic water withdrawal is mostly characterized by a summer peak, while water withdrawal for electricity generation has a winter peak in high-latitude regions and a summer peak in low-latitude regions. Despite the overall increasing trend, irrigation in the western US and domestic water withdrawal in western Europe exhibit a decreasing trend. Our results highlight the distinct spatial pattern of human water use by sectors at the seasonal and annual timescales. The reconstructed gridded water withdrawal dataset is open access, and can be used for examining issues related to water withdrawals at fine spatial, temporal, and sectoral scales.
  • Item
    Water savings potentials of irrigation systems: Global simulation of processes and linkages
    (Göttingen : Copernicus GmbH, 2015) Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.