Search Results

Now showing 1 - 2 of 2
  • Item
    Risks for the global freshwater system at 1.5 °c and 2 °c global warming
    (Bristol : IOP Publishing, 2018) Döll, Petra; Trautmann, Tim; Gerten, Dieter; Müller Schmied, Hannes; Ostberg, Sebastian; Saaed, Fahad; Schleussner, Carl-Friedrich
    To support implementation of the Paris Agreement, the new HAPPI ensemble of 20 bias-corrected simulations of four climate models was used to drive two global hydrological models, WaterGAP and LPJmL, for assessing freshwater-related hazards and risks in worlds approximately 1.5 °C and 2 °C warmer than pre-industrial. Quasi-stationary HAPPI simulations are better suited than transient CMIP-like simulations for assessing hazards at the two targeted long-term global warming (GW) levels. We analyzed seven hydrological hazard indicators that characterize freshwater-related hazards for humans, freshwater biota and vegetation. Using a strict definition for significant differences, we identified for all but one indicator that areas with either significantly wetter or drier conditions (calculated as percent changes from 2006–2015) are smaller in the 1.5 °C world. For example, 7 day high flow is projected to increase significantly on 11% and 21% of the global land area at 1.5 °C and 2 °C, respectively. However, differences between hydrological hazards at the two GW levels are significant on less than 12% of the area. GW affects a larger area and more people by increases—rather than by decreases—of mean annual and 1-in-10 dry year streamflow, 7 day high flow, and groundwater recharge. The opposite is true for 7 day low flow, maximum snow storage, and soil moisture in the driest month of the growing period. Mean annual streamflow shows the lowest projected percent changes of all indicators. Among country groups, low income countries and lower middle income countries are most affected by decreased low flows and increased high flows, respectively, while high income countries are least affected by such changes. The incremental impact between 1.5 °C and 2 °C on high flows would be felt most by low income and lower middle income countries, the effect on soil moisture and low flows most by high income countries.
  • Item
    Contribution of permafrost soils to the global carbon budget
    (Bristol : IOP Publishing, 2013) Schaphoff, Sibyll; Heyder, Ursula; Ostberg, Sebastian; Gerten, Dieter; Heinke, Jens; Lucht, Wolfgang
    Climate warming affects permafrost soil carbon pools in two opposing ways: enhanced vegetation growth leads to higher carbon inputs to the soil, whereas permafrost melting accelerates decomposition and hence carbon release. Here, we study the spatial and temporal dynamics of these two processes under scenarios of climate change and evaluate their influence on the carbon balance of the permafrost zone. We use the dynamic global vegetation model LPJmL, which simulates plant physiological and ecological processes and includes a newly developed discrete layer energy balance permafrost module and a vertical carbon distribution within the soil layer. The model is able to reproduce the interactions between vegetation and soil carbon dynamics as well as to simulate dynamic permafrost changes resulting from changes in the climate. We find that vegetation responds more rapidly to warming of the permafrost zone than soil carbon pools due to long time lags in permafrost thawing, and that the initial simulated net uptake of carbon may continue for some decades of warming. However, once the turning point is reached, if carbon release exceeds uptake, carbon is lost irreversibly from the system and cannot be compensated for by increasing vegetation carbon input. Our analysis highlights the importance of including dynamic vegetation and long-term responses into analyses of permafrost zone carbon budgets.