Search Results

Now showing 1 - 3 of 3
  • Item
    Plasma-oxidative degradation of polyphenolics – Influence of non-thermal gas discharges with respect to fresh produce processing
    (Prague : ČSAZV, 2009) Grzegorzewski, F.; Schlüter, O.; Ehlbeck, J.; Weltmann, K.-D.; Geyer, M.; Kroh, L.W.; Rohn, S.
    Non-thermal plasma treatment is a promising technology to enhance the shelf-life of fresh or minimaly processed food. An efficient inactivation of microorganisms comes along with a moderate heating of the treated surface. To elucidate the influence of highly reactive plasma-immanent species on the stability and chemical behaviour of phytochemicals, several polyphenolics were exposed to an atmospheric pressure plasma jet (APPJ). The selected flavonoids are ideal target compounds due to their antioxidant activity protecting cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, hydroxyl radicals and peroxynitrite. Reactions were carried out at various radio-frequency voltages, using Ar as a feeding gas. Degradation was followed by reversed-phase high-performance liquid chromatography.
  • Item
    Investigation on the potential of applying bio-based edible coatings for horticultural products exemplified with cucumbers
    (Amsterdam : Elsevier, 2022) Rux, G.; Labude, C.; Herppich, W.B.; Geyer, M.
    Plastic packaging for fresh horticultural produce has many advantages but generates plastic waste and ecological alternatives are required. Edible coatings can retard many processes related to loss of quality. Hydrophobic lipid-based coatings are preferably applied for fresh fruits and vegetables. The approval of such coatings for products with edible peels in EU is increasingly under discussion. However, investigations on the efficiency of various edible coatings on soft-skinned fruit and vegetables are rare and it is currently unclear whether the consumer will accept them. Therefore, this study investigates (1) important characteristics of a lipid-based coating and (2) its ability to maintain the post-harvest quality of fresh cucumbers. This was evaluated by a comparative storage test under common suboptimal retail conditions (20 °C; 65% RH). The study also evaluates (3) the general perception of consumers about and their acceptance of the application of edible coatings on fresh fruit and vegetables with edible peels. The investigated coating was able to drastically reduce water loss (54–68%) and fruit respiration (approx. 33%) of fresh cucumber. The reduction of tissue stiffness was delayed by 2 days, thus, prolonged shelf life. Majority of consumer (77%) endorse the application of edible coatings as an alternative to plastic packaging, but emphasized important requirements for them.