Search Results

Now showing 1 - 2 of 2
  • Item
    Evidence of two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn
    ([London] : Nature Publishing Group UK, 2021) Han, Minyong; Inoue, Hisashi; Fang, Shiang; John, Caolan; Ye, Linda; Chan, Mun K.; Graf, David; Suzuki, Takehito; Ghimire, Madhav Prasad; Cho, Won Joon; Kaxiras, Efthimios; Checkelsky, Joseph G.
    The kagome lattice has long been regarded as a theoretical framework that connects lattice geometry to unusual singularities in electronic structure. Transition metal kagome compounds have been recently identified as a promising material platform to investigate the long-sought electronic flat band. Here we report the signature of a two-dimensional flat band at the surface of antiferromagnetic kagome metal FeSn by means of planar tunneling spectroscopy. Employing a Schottky heterointerface of FeSn and an n-type semiconductor Nb-doped SrTiO3, we observe an anomalous enhancement in tunneling conductance within a finite energy range of FeSn. Our first-principles calculations show this is consistent with a spin-polarized flat band localized at the ferromagnetic kagome layer at the Schottky interface. The spectroscopic capability to characterize the electronic structure of a kagome compound at a thin film heterointerface will provide a unique opportunity to probe flat band induced phenomena in an energy-resolved fashion with simultaneous electrical tuning of its properties. Furthermore, the exotic surface state discussed herein is expected to manifest as peculiar spin-orbit torque signals in heterostructure-based spintronic devices.
  • Item
    Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films
    ([London] : Nature Publishing Group, 2022) Ren, Zheng; Li, Hong; Sharma, Shrinkhala; Bhattarai, Dipak; Zhao, He; Rachmilowitz, Bryan; Bahrami, Faranak; Tafti, Fazel; Fang, Shiang; Ghimire, Madhav Prasad; Wang, Ziqiang; Zeljkovic, Ilija
    Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide a direct visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands, and electronic nematicity, our work establishes Fe3Sn2 as an interesting platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.