Search Results

Now showing 1 - 2 of 2
  • Item
    Agent-based simulations for coverage extensions in 5G networks and beyond
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Ghribi, Chaima; Cali, Eli; Hirsch, Christian; Jahnel, Benedikt
    Device-to-device (D2D) communications is one of the key emerging technologies for the fifth generation (5G) networks and beyond. It enables direct communication between mobile users and thereby extends coverage for devices lacking direct access to the cellular infrastructure and hence enhances network capacity. D2D networks are complex, highly dynamic and will be strongly augmented by intelligence for decision making at both the edge and core of the network, which makes them particularly difficult to predict and analyze. Conventionally, D2D systems are evaluated, investigated and analyzed using analytical and probabilistic models (e.g., from stochastic geometry). However, applying classical simulation and analytical tools to such a complex system is often hard to track and inaccurate. In this paper, we present a modeling and simulation framework from the perspective of complex-systems science and exhibit an agent-based model for the simulation of D2D coverage extensions. We also present a theoretical study to benchmark our proposed approach for a basic scenario that is less complicated to model mathematically. Our simulation results show that we are indeed able to predict coverage extensions for multi-hop scenarios and quantify the effects of street-system characteristics and pedestrian mobility on the connection time of devices to the base station (BS). To our knowledge, this is the first study that applies agent-based simulations for coverage extensions in D2D.
  • Item
    Agent-based modeling and simulation for malware spreading in D2D networks
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Benomar, Ziyad; Ghribi, Chaima; Cali, Eli; Hinsen, Alexander; Jahnel, Benedikt
    This paper presents a new multi-agent model for simulating malware propagation in device-to-device (D2D) 5G networks. This model allows to understand and analyze mobile malware-spreading dynamics in such highly dynamical networks. Additionally, we present a theoretical study to validate and benchmark our proposed approach for some basic scenarios that are less complicated to model mathematically and also to highlight the key parameters of the model. Our simulations identify critical thresholds for em no propagation and for em maximum malware propagation and make predictions on the malware-spread velocity as well as device-infection rates. To the best of our knowledge, this paper is the first study applying agent-based simulations for malware propagation in D2D.