Search Results

Now showing 1 - 2 of 2
  • Item
    Optimal boundary control of a nonstandard viscous Cahn-Hilliard system with dynamic boundary condition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing control literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter of the system, which models an additional nonconserving phase transition occurring on the surface of the domain. We show the Fréchet differentiability of the associated control-to-state operator in appropriate Banach spaces and derive results on the existence of optimal controls and on first-order necessary optimality conditions in terms of a variational inequality and the adjoint state system.
  • Item
    Optimal boundary control of a viscous Cahn-Hilliard system with dynamic boundary condition and double obstacle potentials
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Colli, Pierluigi; Farshbaf Shaker, Mohammad Hassan; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we investigate optimal boundary control problems for Cahn--Hilliard variational inequalities with a dynamic boundary condition involving double obstacle potentials and the Laplace--Beltrami operator. The cost functional is of standard tracking type, and box constraints for the controls are prescribed. We prove existence of optimal controls and derive first-order necessary conditions of optimality. The general strategy, which follows the lines of the recent approach by Colli, Farshbaf-Shaker, Sprekels (see Appl. Math. Optim., 2014) to the (simpler) Allen--Cahn case, is the following: we use the results that were recently established by Colli, Gilardi, Sprekels in the preprint arXiv:1407.3916 [math.AP] for the case of (differentiable) logarithmic potentials and perform a so-called ``deep quench limit''. Using compactness and monotonicity arguments, it is shown that this strategy leads to the desired first-order necessary optimality conditions for the case of (non-differentiable) double obstacle potentials.