Search Results

Now showing 1 - 8 of 8
  • Item
    Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N
    (Katlenburg-Lindau : European Geosciences Union, 2021) Hartmann, Markus; Gong, Xianda; Kecorius, Simonas; van Pinxteren, Manuela; Vogl, Teresa; Welti, André; Wex, Heike; Zeppenfeld, Sebastian; Herrmann, Hartmut; Wiedensohler, Alfred; Stratmann, Frank
    Ice-nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. -38gC and have an impact on precipitation formation, cloud optical properties, and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic. We present results from a ship-based campaign to the European Arctic during May to July 2017. We deployed a filter sampler and a continuous-flow diffusion chamber for offline and online INP analyses, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water. Concentrations of INPs (NINP) in the air vary between 2 to 3 orders of magnitudes at any particular temperature and are, except for the temperatures above -10gC and below -32gC, lower than in midlatitudes. In these temperature ranges, INP concentrations are the same or even higher than in the midlatitudes. By heating of the filter samples to 95gC for 1ĝ€¯h, we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust. The SML was found to be enriched in INPs compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2ĝ€¯μm syringe filters led to a significant reduction in ice activity, indicating the INPs are larger and/or are associated with particles larger than 0.2ĝ€¯μm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed airborne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere. In the fog water samples with -3.47gC, we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events. In a case study, we considered a situation during which the ship was located in the marginal sea ice zone and NINP levels in air and the SML were highest in the temperature range above -10gC. Chlorophyll a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed airborne INP population. Therefore, we conclude that during the case study collected airborne INPs originated from a local biogenic probably marine source. © Author(s) 2021.
  • Item
    Concerted measurements of lipids in seawater and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective transfer and high enrichments
    (Katlenburg-Lindau : EGU, 2021) Triesch, Nadja; van Pinxteren, Manuela; Frka, Sanja; Stolle, Christian; Spranger, Tobias; Hoffmann, Erik Hans; Gong, Xianda; Wex, Heike; Schulz-Bull, Detlef; Gasparovic, Blazenka; Herrmann, Hartmut
    In the marine environment, measurements of lipids as representative species within different lipid classes have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. The set of lipid classes includes hydrocarbons (HC); fatty acid methyl esters (ME); free fatty acids (FFA); alcohols (ALC); 1,3-diacylglycerols (1,3 DG); 1,2-diacylglycerols (1,2 DG); monoacylglycerols (MG); wax esters (WE); triacylglycerols (TG); and phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), as well as glycolipids (GL) which cover sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST). These introduced lipid classes have been analyzed in the dissolved and particulate fraction of seawater, differentiating between underlying water (ULW) and the sea surface microlayer (SML) on the one hand. On the other hand, they have been examined on ambient submicrometer aerosol particle samples (PM1) which were collected at the Cape Verde Atmospheric Observatory (CVAO) by applying concerted measurements. These different lipids are found in all marine compartments but in different compositions. Along the campaign, certain variabilities are observed for the concentration of dissolved (∑DLULW: 39.8–128.5 µg L−1, ∑DLSML: 55.7–121.5 µg L−1) and particulate (∑PLULW: 36.4–93.5 µg L−1, ∑PLSML: 61.0–118.1 µg L−1) lipids in the seawater of the tropical North Atlantic Ocean. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured. As also bacteria – besides phytoplankton sources – influence the lipid concentrations in seawater and on the aerosol particles, the lipid abundance cannot be exclusively explained by the phytoplankton tracer (chlorophyll a). The concentration and enrichment of lipids in the SML are not related to physicochemical properties which describe the surface activity. On the aerosol particles, an EFaer (the enrichment factor on the submicrometer aerosol particles compared to the SML) between 9×104–7×105 is observed. Regarding the individual lipid groups on the aerosol particles, a statistically significant correlation (R2=0.45, p=0.028) was found between EFaer and lipophilicity (expressed by the KOW value), which was not present for the SML. But simple physicochemical descriptors are overall not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean–atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extent of the enrichment of the lipid class constituents on the aerosol particles might be related to the distribution of the lipid within the bubble–air–water interface. The lipids TG and ALC which are preferably arranged within the bubble interface are transferred to the aerosol particles to the highest extent. Finally, the connection between ice nucleation particles (INPs) in seawater, which are already active at higher temperatures (−10 to −15 ∘C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred into the atmosphere.
  • Item
    Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater
    (Katlenburg-Lindau : EGU, 2020) Gong, Xianda; Wex, Heike; van Pinxteren, Manuela; Triesch, Nadja; Fomba, Khanneh Wadinga; Lubitz, Jasmin; Stolle, Christian; Robinson, Tiera-Brandy; Müller, Thomas; Herrmann, Hartmut; Stratmann, Frank
    Ice-nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized, and, although there is some understanding of their sources, it is still unclear to what extend different sources contribute or if all sources are known. In this work, we examined properties of INPs at Cabo Verde (a.k.a. Cape Verde) from different environmental compartments: the oceanic sea surface microlayer (SML), underlying water (ULW), cloud water and the atmosphere close to both sea level and cloud level. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with ice-nucleation temperature. NINP values in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular ice-nucleation temperature spanned around 1 order of magnitude below −15 ∘C, and about 2 orders of magnitude at warmer temperatures (>−12  ∘C). Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 L−1 at −10 ∘C. After heating samples at 95 ∘C for 1 h, the elevated NINP at the warm temperatures disappeared, indicating that these highly ice active INPs were most likely biological particles. INP number concentrations in PM1 were generally lower than those in PM10 at CVAO. About 83±22 %, 67±18 % and 77±14 % (median±standard deviation) of INPs had a diameter >1 µm at ice-nucleation temperatures of −12, −15 and −18 ∘C, respectively. PM1 at CVAO did not show such elevated NINP at warm temperatures. Consequently, the difference in NINP between PM1 and PM10 at CVAO suggests that biological ice-active particles were present in the supermicron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during noncloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV but in cloud water samples instead. This is direct evidence that these INPs, which are likely biological, are activated to cloud droplets during cloud events. For the observed air masses, atmospheric NINP values in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. This latter conclusion still holds when accounting for an enrichment of organic carbon in supermicron particles during sea spray generation as reported in literature.
  • Item
    Understanding aerosol microphysical properties from 10 years of data collected at Cabo Verde based on an unsupervised machine learning classification
    (Katlenburg-Lindau : EGU, 2022) Gong, Xianda; Wex, Heike; Müller, Thomas; Henning, Silvia; Voigtländer, Jens; Wiedensohler, Alfred; Stratmann, Frank
    The Cape Verde Atmospheric Observatory (CVAO), which is influenced by both marine and desert dust air masses, has been used for long-term measurements of different properties of the atmospheric aerosol from 2008 to 2017. These properties include particle number size distributions (PNSD), light-absorbing carbon (LAC) and concentrations of cloud condensation nuclei (CCN) together with their hygroscopicity. Here we summarize the results obtained for these properties and use an unsupervised machine learning algorithm for the classification of aerosol types. Five types of aerosols, i.e., marine, freshly formed, mixture, moderate dust and heavy dust, were classified. Air masses during marine periods are from the Atlantic Ocean and during dust periods are from the Sahara Desert. Heavy dust was more frequently present during wintertime, whereas the clean marine periods were more frequently present during springtime. It was observed that during the dust periods CCN number concentrations at a supersaturation of 0.30g% were roughly 2.5 times higher than during marine periods, but the hygroscopicity (κ) of particles in the size range from g1/4g30 to g1/4g175gnm during marine and dust periods were comparable. The long-term data presented here, together with the aerosol classification, can be used as a basis to improve our understanding of annual cycles of the atmospheric aerosol in the eastern tropical Atlantic Ocean and on aerosol-cloud interactions and it can be used as a basis for driving, evaluating and constraining atmospheric model simulations.
  • Item
    High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean
    (Katlenburg-Lindau : EGU, 2022) van Pinxteren, Manuela; Robinson, Tiera-Brandy; Zeppenfeld, Sebastian; Gong, Xianda; Bahlmann, Enno; Fomba, Khanneh Wadinga; Triesch, Nadja; Stratmann, Frank; Wurl, Oliver; Engel, Anja; Wex, Heike; Herrmann, Hartmut
    Transparent exopolymer particles (TEPs) exhibit the properties of gels and are ubiquitously found in the world oceans. TEPs may enter the atmosphere as part of sea-spray aerosol. Here, we report number concentrations of TEPs with a diameter >4.5 μm, hence covering a part of the supermicron particle range, in ambient aerosol and cloud water samples from the tropical Atlantic Ocean as well as in generated aerosol particles using a plunging waterfall tank that was filled with the ambient seawater. The ambient TEP concentrations ranged between 7×102 and 3×104 #TEP m-3 in the aerosol particles and correlations with sodium (Na+) and calcium (Ca2+) (R2=0.5) suggested some contribution via bubble bursting. Cloud water TEP concentrations were between 4×106 and 9×106 #TEP L-1 and, according to the measured cloud liquid water content, corresponding to equivalent air concentrations of 2-4 × 103 #TEP m-3. Based on Na+ concentrations in seawater and in the atmosphere, the enrichment factors for TEPs in the atmosphere were calculated. The tank-generated TEPs were enriched by a factor of 50 compared with seawater and, therefore, in-line with published enrichment factors for supermicron organic matter in general and TEPs specifically. TEP enrichment in the ambient atmosphere was on average 1×103 in cloud water and 9×103 in ambient aerosol particles and therefore about two orders of magnitude higher than the corresponding enrichment from the tank study. Such high enrichment of supermicron particulate organic constituents in the atmosphere is uncommon and we propose that atmospheric TEP concentrations resulted from a combination of enrichment during bubble bursting transfer from the ocean and a secondary TEP in-situ formation in atmospheric phases. Abiotic in-situ formation might have occurred from aqueous reactions of dissolved organic precursors that were present in particle and cloud water samples, whereas biotic formation involves bacteria, which were abundant in the cloud water samples. The ambient TEP number concentrations were two orders of magnitude higher than recently reported ice nucleating particle (INP) concentrations measured at the same location. As TEPs likely possess good properties to act as INPs, in future experiments it is worth studying if a certain part of TEPs contributes a fraction of the biogenic INP population.
  • Item
    Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region
    (Katlenburg-Lindau : EGU, 2022) Gong, Xianda; Radenz, Martin; Wex, Heike; Seifert, Patric; Ataei, Farnoush; Henning, Silvia; Baars, Holger; Barja, Boris; Ansmann, Albert; Stratmann, Frank
    The sources and abundance of ice-nucleating particles (INPs) that initiate cloud ice formation remain understudied, especially in the Southern Hemisphere. In this study, we present INP measurements taken close to Punta Arenas, Chile, at the southernmost tip of South America from May 2019 to March 2020, during the Dynamics, Aerosol, Cloud, And Precipitation Observations in the Pristine Environment of the Southern Ocean (DACAPO-PESO) campaign. The highest ice nucleation temperature was observed at −3◦C, and from this temperature down to ∼ −10◦C, a sharp increase of INP number concentration (NINP) was observed. Heating of the samples revealed that roughly 90 % and 80 % of INPs are proteinaceous-based biogenic particles at > −10 and −15◦C, respectively. The NINP at Punta Arenas is much higher than that in the Southern Ocean, but it is comparable with an agricultural area in Argentina and forestry environment in the US. Ice active surface site density (ns) is much higher than that for marine aerosol in the Southern Ocean, but comparable to English fertile soil dust. Parameterization based on particle number concentration in the size range larger than 500 nm (N>500 nm) from the global average (DeMott et al., 2010) overestimates the measured INP, but the parameterization representing biological particles from a forestry environment (Tobo et al., 2013) yields NINP comparable to this study. No clear seasonal variation of NINP was observed. High precipitation is one of the most important meteorological parameters to enhance the NINP in both cold and warm seasons. A comparison of data from in situ and lidar measurements showed good agreement for concentrations of large aerosol particles (> 500 nm) when assuming continental conditions for retrieval of the lidar data, suggesting that these particles were well mixed within the planetary boundary layer (PBL). This corroborates the continental origin of these particles, consistent with the results from our INP source analysis. Overall, we suggest that a high NINP of biogenic INPs originated from terrestrial sources and were added to the marine air masses during the overflow of a maximum of roughly 150 km of land before arriving at the measurement station.
  • Item
    Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 1: Particle number size distribution, cloud condensation nuclei and their origins
    (Katlenburg-Lindau : EGU, 2020) Gong, Xianda; Wex, Heike; Voigtländer, Jens; Fomba, Khanneh Wadinga; Weinhold, Kay; van Pinxteren, Manuela; Henning, Silvia; Müller, Thomas; Herrmann, Hartmut; Stratmann, Frank
    In the framework of the MarParCloud (Marine biological production, organic aerosol particles and marine clouds: a Process Chain) project, measurements were carried out on the islands of Cabo Verde (a.k.a. Cape Verde) to investigate the abundance, properties and sources of aerosol particles in general, and cloud condensation nuclei (CCN) in particular, both close to sea level and at the cloud level. A thorough comparison of particle number concentration (PNC), particle number size distribution (PNSD) and CCN number concentration (NCCN) at the Cape Verde Atmospheric Observatory (CVAO, sea-level station) and Monte Verde (MV, cloud-level station) reveals that during times without clouds the aerosols at CVAO and MV are similar and the boundary layer is generally well mixed. Therefore, data obtained at CVAO can be used to describe the aerosol particles at cloud level. Cloud events were observed at MV during roughly 58 % of the time, and during these events a large fraction of particles was activated to cloud droplets. A trimodal parameterization method was deployed to characterize PNC at CVAO. Based on number concentrations in different aerosol modes, four well-separable types of PNSDs were found, which were named the marine type, mixture type, dust type1 and dust type2. Aerosol particles differ depending on their origins. When the air masses came from the Atlantic Ocean, sea spray can be assumed to be one source for particles besides new particle formation. For these air masses, PNSDs featured the lowest number concentration in Aitken, accumulation and coarse modes. Particle number concentrations for sea spray aerosol (SSA, i.e., the coarse mode for these air masses) accounted for about 3.7 % of NCCN,0.30 % (CCN number concentration at 0.30 % supersaturation) and about 1.1 % to 4.4 % of Ntotal (total particle number concentration). When the air masses came from the Sahara, we observed enhanced Aitken, accumulation and coarse mode particle number concentrations and overall increased NCCN; NCCN,0.30 % during the strongest observed dust periods is about 2.5 times higher than that during marine periods. However, the particle hygroscopicity parameter κ for these two most different periods shows no significant difference and is generally similar, independent of air mass. Overall, κ averaged 0.28, suggesting the presence of organic material in particles. This is consistent with previous model work and field measurements. There is a slight increase in κ with increasing particle size, indicating the addition of soluble, likely inorganic, material during cloud processing.
  • Item
    Marine organic matter in the remote environment of the Cape Verde islands-an introduction and overview to the MarParCloud campaign
    (Katlenburg-Lindau : EGU, 2020) van Pinxteren, Manuela; Fomba, KhannehWadinga; Triesch, Nadja; Stolle, Christian; Wurl, Oliver; Bahlmann, Enno; Gong, Xianda; Voigtländer, Jens; Wex, Heike; Robinson, Tiera-Brandy; Barthel, Stefan; Zeppenfeld, Sebastian; Hoffmann, Erik Hans; Roveretto, Marie; Li, Chunlin; Grosselin, Benoit; Daële, Veronique; Senf, Fabian; van Pinxteren, Dominik; Manzi, Malena; Zabalegui, Nicolás; Frka, Sanja; Gašparović, Blaženka; Pereira, Ryan; Li, Tao; Wen, Liang; Li, Jiarong; Zhu, Chao; Chen, Hui; Chen, Jianmin; Fiedler, Björn; von Tümpling, Wolf; Read, Katie Alana; Punjabi, Shalini; Lewis, Alastair Charles; Hopkins, James Roland; Carpenter, Lucy Jane; Peeken, Ilka; Rixen, Tim; Schulz-Bull, Detlef; Mong, María Eugenia; Mellouki, Abdelwahid; George, Christian; Stratmann, Frank; Herrmann, Hartmut
    The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September-October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation-and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean-atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecularweight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited. © Author(s) 2020.