Search Results

Now showing 1 - 2 of 2
  • Item
    Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans
    (Katlenburg-Lindau : EGU, 2020) Welti, André; Bigg, Keith E.; DeMott, Paul J.; Gong, Xianda; Hartmann, Markus; Harvey, Mike; Henning, Silvia; Herenz, Paul; Hill, Thomas C.J.; Hornblow, Blake; Leck, Caroline; Löffler, Mareike; McCluskey, Christina S.; Rauker, Anne Marie; Schmale, Julia; Tatzelt, Christian; van Pinxteren, Manuela; Stratmann, Frank
    Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions. The presented data from literature and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of ambient ice nuclei show 1 to 2 orders of magnitude lower mean concentrations. To quantify the geographical variability in oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the expedition tracks into tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional zones follow temperature spectra with similar slopes but vary in absolute concentration. Typically, the frequency with which specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally, the potential contribution of ship exhaust to the measured ice nuclei concentration on board research vessels is analysed as function of temperature. We find a sharp onset of the influence at approximately 36 C but none at warmer temperatures that could bias ship-based measurements. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: A case study in the Fram Strait and Barents Sea
    (Katlenburg-Lindau : EGU, 2019) Kecorius, Simonas; Vogl, Teresa; Paasonen, Pauli; Lampilahti, Janne; Rothenberg, Daniel; Wex, Heike; Zeppenfeld, Sebastian; van Pinxteren, Manuela; Hartmann, Markus; Henning, Silvia; Gong, Xianda; Welti, Andre; Kulmala, Markku; Stratmann, Frank; Herrmann, Hartmut; Wiedensohler, Alfred
    In a warming Arctic the increased occurrence of new particle formation (NPF) is believed to originate from the declining ice coverage during summertime. Understanding the physico-chemical properties of newly formed particles, as well as mechanisms that control both particle formation and growth in this pristine environment, is important for interpreting aerosol-cloud interactions, to which the Arctic climate can be highly sensitive. In this investigation, we present the analysis of NPF and growth in the high summer Arctic. The measurements were made on-board research vessel Polarstern during the PS106 Arctic expedition. Four distinctive NPF and subsequent particle growth events were observed, during which particle (diameter in a range 10-50 nm) number concentrations increased from background values of approx. 40 up to 4000 cm-3. Based on particle formation and growth rates, as well as hygroscopicity of nucleation and the Aitken mode particles, we distinguished two different types of NPF events. First, some NPF events were favored by negative ions, resulting in more-hygroscopic nucleation mode particles and suggesting sulfuric acid as a precursor gas. Second, other NPF events resulted in less-hygroscopic particles, indicating the influence of organic vapors on particle formation and growth. To test the climatic relevance of NPF and its influence on the cloud condensation nuclei (CCN) budget in the Arctic, we applied a zero-dimensional, adiabatic cloud parcel model. At an updraft velocity of 0.1 m s-1, the particle number size distribution (PNSD) generated during nucleation processes resulted in an increase in the CCN number concentration by a factor of 2 to 5 compared to the background CCN concentrations. This result was confirmed by the directly measured CCN number concentrations. Although particles did not grow beyond 50 nm in diameter and the activated fraction of 15-50 nm particles was on average below 10 %, it could be shown that the sheer number of particles produced by the nucleation process is enough to significantly influence the background CCN number concentration. This implies that NPF can be an important source of CCN in the Arctic. However, more studies should be conducted in the future to understand mechanisms of NPF, sources of precursor gases and condensable vapors, as well as the role of the aged nucleation mode particles in Arctic cloud formation. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.