Search Results

Now showing 1 - 3 of 3
  • Item
    Flexible distributed Bragg reflectors from nanocolumnar templates
    (Hoboken, NJ : Wiley, 2015) Calvo, Mauricio E.; González-García, Lola; Parra-Barranco, Julián; Barranco, Angel; Jiménez-Solano, Alberto; González-Elipe, Agustín R.; Míguez, Hernán
    A flexible distributed Bragg reflector is made by the infiltration of a nanocolumnar array with polydimethyl siloxane oligomers. The high optical reflectance displayed by the final material is a direct consequence of the high refractive index contrast of the columnar layers whereas the structural stability is due to the polymer properties.
  • Item
    Multivalent bonds in self-assembled bundles of ultrathin gold nanowires
    (Cambridge : Royal Society of Chemistry, 2016) Reiser, Beate; Gerstner, Dominik; González-García, Lola; Maurer, Johannes H.M.; Kanelidis, Ioannis; Kraus, Tobias
    Ultrathin gold nanowires are unusual colloidal objects that assemble into bundles with line contacts between parallel wires. Each molecule in the contact line interacts with many ligand and solvent molecules. We used X-ray scattering and electron microscopy to study how these interactions control assembly.
  • Item
    Percolation of rigid fractal carbon black aggregates
    (Melville, NY : American Institute of Physics, 2021) Coupette, Fabian; Zhang, Long; Kuttich, Björn; Chumakov, Andrei; Roth, Stephan V.; González-García, Lola; Kraus, Tobias; Schilling, Tanja
    We examine network formation and percolation of carbon black by means of Monte Carlo simulations and experiments. In the simulation, we model carbon black by rigid aggregates of impenetrable spheres, which we obtain by diffusion-limited aggregation. To determine the input parameters for the simulation, we experimentally characterize the micro-structure and size distribution of carbon black aggregates. We then simulate suspensions of aggregates and determine the percolation threshold as a function of the aggregate size distribution. We observe a quasi-universal relation between the percolation threshold and a weighted average radius of gyration of the aggregate ensemble. Higher order moments of the size distribution do not have an effect on the percolation threshold. We conclude further that the concentration of large carbon black aggregates has a stronger influence on the percolation threshold than the concentration of small aggregates. In the experiment, we disperse the carbon black in a polymer matrix and measure the conductivity of the composite. We successfully test the hypotheses drawn from simulation by comparing composites prepared with the same type of carbon black before and after ball milling, i.e., on changing only the distribution of aggregate sizes in the composites.