Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Rapid synthesis of pristine graphene inside a transmission electron microscope using gold as catalyst

2019, Gonzalez-Martinez, Ignacio G., Bachmatiuk, Alicja, Gemming, Thomas, Trzebicka, Barbara, Liu, Zhongfan, Rummeli, Mark H.

Multiple methods with distinctive strengths and drawbacks have been devised so far to produce graphene. However, they all need post-synthesis transfer steps to characterize the product. Here we report the synthesis of pristine graphene inside the transmission electron microscope using gold as catalyst and self-removing substrate without employing a specialized specimen holder. The process occurs at room temperature and takes place within milliseconds. The method offers the possibility of precise spatial control for graphene production and immediate characterization. Briefly, the irradiating electrons generate secondary electrons leading to surface charging if the gold particles reside on a poorly conducting support. At a critical charge density, the particle ejects ions mixed with secondary electrons (plasma) causing the particle to shrink. Simultaneously, hydrocarbon contamination within the electron microscope is cracked, thus providing carbon for the growth of graphene on the particle’s surface. The Technique is potentially attractive for the manufacture of in situ graphene-based devices. © 2019, The Author(s).

Loading...
Thumbnail Image
Item

In-situ quasi-instantaneous e-beam driven catalyst-free formation of crystalline aluminum borate nanowires

2016, Gonzalez-Martinez, Ignacio G., Gemming, Thomas, Mendes, Rafael, Bachmatiuk, Alicja, Bezugly, Viktor, Kunstmann, Jens, Eckert, Jürgen, Cuniberti, Gianaurelio, Rümmeli, Mark H.

The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium nanowires using the electron beam in a transmission electron microscope. We provide strong experimental evidence that supports a formation process that can be viewed as a phase transition in which the generation of free-volume induced by the electron beam irradiation enhances the atomic mobility within the precursor material. The enhanced atomic mobility and specific features of the crystal structure of Al5BO9 drive the atomic rearrangement that results in the large scale formation of highly crystalline aluminium borate nanowires. The whole formation process can be completed within fractions of a second. Our developed growth mechanism might also be extended to describe the catalyst-free formation of other nanowires.