Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Temperature gradient-induced magnetization reversal of single ferromagnetic nanowires

2017-11-17, Michel, Ann-Kathrin, Niemann, Anna Corinna, Boehnert, Tim, Martens, Stephan, Moreno, Josep M. Montero, Goerlitz, Detlef, Zierold, Robert, Reith, Heiko, Vega, Victor, Prida, Victor M., Thomas, Andy, Gooth, Johannes, Nielsch, Kornelius

In this study, we investigate the temperature- and temperature gradient-dependent magnetization reversal process of individual, single-domain Co39Ni61 and Fe15Ni85 ferromagnetic nanowires via the magneto-optical Kerr effect and magnetoresistance measurements. While the coercive fields (HC) and therefore the magnetic switching fields (HSW) generally decrease under isothermal conditions at elevated base temperatures (Tbase), temperature gradients (ΔT) along the nanowires lead to an increased switching field of up to 15% for ΔT  = 300 K in Co39Ni61 nanowires. This enhancement is attributed to a stress-induced, magneto-elastic anisotropy term due to an applied temperature gradient along the nanowire that counteracts the thermally assisted magnetization reversal process. Our results demonstrate that a careful distinction between locally elevated temperatures and temperature gradients has to be made in future heat-assisted magnetic recording devices.

Loading...
Thumbnail Image
Item

Transition to the quantum hall regime in InAs nanowire cross-junctions

2019, Gooth, Johannes, Borg, Mattias, Schmid, Heinz, Bologna, Nicolas, Rossell, Marta D., Wirths, Stephan, Moselund, Kirsten, Nielsch, Kornelius, Riel, Heike

We present a low-temperature electrical transport study on four-terminal ballistic InAs nanowire cross-junctions in magnetic fields aligned perpendicular to the cross-plane. Two-terminal longitudinal conductance measurements between opposing contact terminals reveal typical 1D conductance quantization at zero magnetic field. As the magnetic field is applied, the 1D bands evolve into hybrid magneto-electric sub-levels that eventually transform into Landau levels for the widest nanowire devices investigated (width = 100 nm). Hall measurements in a four-terminal configuration on these devices show plateaus in the transverse Hall resistance at high magnetic fields that scale with (ve 2 /h) -1 . e is the elementary charge, h denotes Planck's constant and v is an integer that coincides with the Landau level index determined from the longitudinal conductance measurements. While the 1D conductance quantization in zero magnetic field is fragile against disorder at the NW surface, the plateaus in the Hall resistance at high fields remain robust as expected for a topologically protected Quantum Hall phase. © 2019 IOP Publishing Ltd.