Search Results

Now showing 1 - 2 of 2
  • Item
    Temperature and pressure profiles of an ablation-controlled arc plasma in air
    (Bristol : IOP Publ., 2019) Becerra, Marley; Pettersson, Jonas; Franke, Steffen; Gortschakow, Sergey
    Experimental measurements of the spatial distribution of temperature and composition of ablation-controlled arc plasmas are a key to validate the predictions of metal evaporation and polymer ablation models. Thus, high-speed photography and space-resolved spectroscopic measurements have been performed to characterize a stable air arc plasma jet controlled by ablation of a polymer nozzle made of Polyoxymethylene copolymer (POM-C) or polyamide (PA6). The spectroscopic analysis is performed along a plane perpendicular to the arc jet axis for a current of 1.8 kA, corresponding to an estimated current density of ~65 A mm-2. Temperature and partial pressure profiles of the plasma for copper, hydrogen and carbon in the gas mixture are estimated as an inverse optimization problem by using measured side-on radiance spectra and radiative transfer spectral simulations. It is shown that the generated ablation-controlled arc has a complicated, non-uniform gas composition. Thus, the generated arc jet has a thin metallic core with a lower almost constant hydrogen pressure, surrounded by a thicker hydrogen and carbon mantle at partial pressures slightly lower than atmospheric pressure. The separation of hydrogen and carbon in the core is a consequence of demixing of the polymer vapour in the plasma. It is found that the overall shape of the temperature and pressure profiles obtained for the arc plasmas with the POM-C and PA6 nozzles are similar although differ in peak values and width. © 2019 IOP Publishing Ltd.
  • Item
    Positive streamers: inception and propagation along mineral-oil/solid interfaces
    (Bristol ; Philadelphia, PA : IOP Publishing Ltd., 2020) Ariza, David; Hollertz, Rebecca; Methling, Ralf; Gortschakow, Sergey
    This paper presents an experimental characterization of the prebreakdown phenomena in liquid/solid interfaces. The characterization is devoted to the 2nd mode positive streamers initiated and propagated along interfaces of mineral-oil and solids with different chemical composition and physical properties. Polymers of low density polyethylene (LDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE) polyvinylidene fluoride (PVDF) and papers made of kraft paper and a kraft fibril paper (made from cellulosic micro and nano fibrils), lignin-free paper and paper with high lignin content (referred to as k107 kraft paper) are used as the solid to study their influence on the streamer inception and propagation. The streamers are initiated at the interface by applying steps of voltage to a point-plane electrode arrangement with a solid (dielectric barrier) into the gap. The solid is placed diagonal to the oil gap and near to the point electrode. Shadowgraphs, charge and light intensity recordings are obtained during the inception and propagation of the streamers. Thus, estimations of the streamer length, velocity, current and average charge, are also presented. A time delay has been observed before the initiation of the streamer. This delay is probably correlated to the initiation process and formation of the gaseous phase of the streamer near to the interface. The threshold propagation voltage of the 2nd mode streamers at mineral-oil/solid interfaces is shown to be independent of the interface. However, the inception voltage is highly influenced by the interface. Additionally, the observed characteristics of streamers propagation (e.g. current, length, velocity, etc) along the tested interfaces cannot be fully explained by a capacitive coupling effect (permittivity mismatch). This open a discussion for the possibility that properties of the solid such as chemical composition, wettability and surface roughness can influence the streamer propagation.