Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Temperature and pressure profiles of an ablation-controlled arc plasma in air

2019, Becerra, Marley, Pettersson, Jonas, Franke, Steffen, Gortschakow, Sergey

Experimental measurements of the spatial distribution of temperature and composition of ablation-controlled arc plasmas are a key to validate the predictions of metal evaporation and polymer ablation models. Thus, high-speed photography and space-resolved spectroscopic measurements have been performed to characterize a stable air arc plasma jet controlled by ablation of a polymer nozzle made of Polyoxymethylene copolymer (POM-C) or polyamide (PA6). The spectroscopic analysis is performed along a plane perpendicular to the arc jet axis for a current of 1.8 kA, corresponding to an estimated current density of ~65 A mm-2. Temperature and partial pressure profiles of the plasma for copper, hydrogen and carbon in the gas mixture are estimated as an inverse optimization problem by using measured side-on radiance spectra and radiative transfer spectral simulations. It is shown that the generated ablation-controlled arc has a complicated, non-uniform gas composition. Thus, the generated arc jet has a thin metallic core with a lower almost constant hydrogen pressure, surrounded by a thicker hydrogen and carbon mantle at partial pressures slightly lower than atmospheric pressure. The separation of hydrogen and carbon in the core is a consequence of demixing of the polymer vapour in the plasma. It is found that the overall shape of the temperature and pressure profiles obtained for the arc plasmas with the POM-C and PA6 nozzles are similar although differ in peak values and width. © 2019 IOP Publishing Ltd.

Loading...
Thumbnail Image
Item

First‐mode of negative streamers: Inception at liquid/solid interfaces

2021, Ariza, David, Beroual, Abderrahmane, Methling, Ralf, Gortschakow, Sergey, Chamorro, Harold R.

An experimental study of the inception of the first-mode negative streamer at liquid/solid interfaces is presented in this article. The study is performed with a point-plane configuration under square high voltage pulses. The electrode configuration is immersed in mineral oil and the liquid/solid interface is assembled in contact with the point electrode or in its vicinity. Four polymers and two impregnated papers have been tested as solids of the liquid/solid interface. Thus, it is possible to compare the influence of different parameter of the solid and the interface on the streamer inception. For example: Permittivity, solid surface roughness, chemical composition, etc. It has been observed that streamer inception voltages at interfaces with solids of higher permittivity to that of the mineral oil are statistically similar. Additionally, streamer inception voltages of streamer initiated free in the oil (no liquid/solid interface) are similar to that of the inception voltage of cases with solids with high permittivity. In contrast, the inception voltage of streamers initiated at permittivity matched interfaces are shown to be highest of the cases. The streamer inception voltage is also studied for different distances between the liquid/solid interface and the point electrode with a permittivity matched interface. The results show a dependency of the inception voltage and the distance between the point electrode and the interface. Finally, an analysis of the observation is performed to show that the Townsend-Meek criterion cannot predict the obtained results.

Loading...
Thumbnail Image
Item

Positive streamers: inception and propagation along mineral-oil/solid interfaces

2020, Ariza, David, Hollertz, Rebecca, Methling, Ralf, Gortschakow, Sergey

This paper presents an experimental characterization of the prebreakdown phenomena in liquid/solid interfaces. The characterization is devoted to the 2nd mode positive streamers initiated and propagated along interfaces of mineral-oil and solids with different chemical composition and physical properties. Polymers of low density polyethylene (LDPE), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE) polyvinylidene fluoride (PVDF) and papers made of kraft paper and a kraft fibril paper (made from cellulosic micro and nano fibrils), lignin-free paper and paper with high lignin content (referred to as k107 kraft paper) are used as the solid to study their influence on the streamer inception and propagation. The streamers are initiated at the interface by applying steps of voltage to a point-plane electrode arrangement with a solid (dielectric barrier) into the gap. The solid is placed diagonal to the oil gap and near to the point electrode. Shadowgraphs, charge and light intensity recordings are obtained during the inception and propagation of the streamers. Thus, estimations of the streamer length, velocity, current and average charge, are also presented. A time delay has been observed before the initiation of the streamer. This delay is probably correlated to the initiation process and formation of the gaseous phase of the streamer near to the interface. The threshold propagation voltage of the 2nd mode streamers at mineral-oil/solid interfaces is shown to be independent of the interface. However, the inception voltage is highly influenced by the interface. Additionally, the observed characteristics of streamers propagation (e.g. current, length, velocity, etc) along the tested interfaces cannot be fully explained by a capacitive coupling effect (permittivity mismatch). This open a discussion for the possibility that properties of the solid such as chemical composition, wettability and surface roughness can influence the streamer propagation.

Loading...
Thumbnail Image
Item

Properties of vacuum arcs generated by switching RMF contacts at different ignition positions

2020, Gortschakow, Sergey, Franke, Steffen, Methling, Ralf, Gonzalez, Diego, Lawall, Andreas, Taylor, Erik D., Graskowski, Frank

The influence of initiation behavior of the drawn arc on the arc motion, on arc characteristics during the active phase, as well as on the post-arc parameters, was studied. The study was focused on arc dynamics, determination of the anode surface temperature after current interruption, and diagnostics of metal vapor density after current zero crossing. Different optical diagnostics, namely high-speed camera video enhanced by narrow-band optical filters, near infrared spectroscopy, and optical absorption spectroscopy was applied. The initiation behavior of the drawn arc had a clear influence on arc parameters. Higher local electrode temperature occurs in case of the electrodes with ignition point near the outer electrode boundary. This further causes an enhanced density of chromium vapor, even in cases with lower arc duration. The results of this study are important for design development of switching RMF contacts for future green energy applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.