Search Results

Now showing 1 - 2 of 2
  • Item
    Sugar Modification Enhances Cytotoxic Activity of PAMAM-Doxorubicin Conjugate in Glucose-Deprived MCF-7 Cells – Possible Role of GLUT1 Transporter
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Sztandera, Krzysztof; Działak, Paula; Marcinkowska, Monika; Stańczyk, Maciej; Gorzkiewicz, Michał; Janaszewska, Anna; Klajnert-Maculewicz, Barbara
    Purpose: In order to overcome the obstacles and side effects of classical chemotherapy, numerous studies have been performed to develop the treatment based on targeted transport of active compounds directly to the site of action. Since tumor cells are featured with intensified glucose metabolism, we set out to develop innovative, glucose-modified PAMAM dendrimer for the delivery of doxorubicin to breast cancer cells. Methods: PAMAM-dox-glc conjugate was synthesized and characterized by 1H NMR, FT-IR, size and zeta potential measurements. The drug release rate from conjugate was evaluated by dialysis under different pH conditions. The expression level of GLUT family receptors in cells cultured in full and glucose-deprived medium was evaluated by quantitative real-time RT-PCR and flow cytometry. The cytotoxicity of conjugate in presence or absence of GLUT1 inhibitors was determined by MTT assay. Results: We showed that PAMAM-dox-glc conjugate exhibits pH-dependent drug release and increased cytotoxic activity compared to free drug in cells cultured in medium without glucose. Further, we proved that these cells overexpress transporters of GLUT family. The toxic effect of conjugate was eliminated by the application of specific GLUT1 inhibitors. Conclusion: Our findings revealed that the glucose moiety plays a crucial role in the recognition of cells with high expression of GLUT receptors. By selectively blocking GLUT1 transporter we showed its importance for the cytotoxic activity of PAMAM-dox-glc conjugate. These results suggest that PAMAM-glucose formulations may constitute an efficient platform for the specific delivery of anticancer drugs to tumor cells overexpressing transporters of GLUT family. © 2019, The Author(s).
  • Item
    Nanocarriers in photodynamic therapy—in vitro and in vivo studies
    (Malden, MA : Wiley-Blackwell, 2019) Sztandera, Krzysztof; Gorzkiewicz, Michał; Klajnert‐Maculewicz, Barbara
    Photodynamic therapy (PDT) is a minimally invasive technique which has proven to be successful in the treatment of several types of tumors. This relatively simple method exploits three inseparable elements: phototoxic compound (photosensitizer [PS]), light source, and oxygen. Upon irradiation by light with specified wavelength, PS generates reactive oxygen species, which starts the cascade of reactions leading to cell death. The positive therapeutic outcome of PDT may be limited due to several aspects, including low water solubility of PSs, hampering their effective administration and blood circulation, as well as low tumor specificity, inefficient cellular uptake and activation energies requiring prolonged illumination times. One of the promising approaches to overcome these obstacles involves the use of carrier systems modulating pharmacokinetics and pharmacodynamics of the PSs. In the present review, we summarized current in vitro and in vivo studies regarding the use of nanoparticles as potential delivery devices for PSs to enhance their cellular uptake and cytotoxic properties, and thus—the therapeutic outcome of PDT.