Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Predicting the dominating factors during heat transfer in magnetocaloric composite wires

2020, Krautz, M., Beyer, L., Funk, A., Waske, A., Weise, B., Freudenberger, J., Gottschall, T.

Magnetocaloric composite wires have been studied by pulsed-field measurements up to μ0ΔH = 10 T with a typical rise time of 13 ms in order to evaluate the evolution of the adiabatic temperature change of the core, ΔTad, and to determine the effective temperature change at the surrounding steel jacket, ΔTeff, during the field pulse. An inverse thermal hysteresis is observed for ΔTad due to the delayed thermal transfer. By numerical simulations of application-relevant sinusoidal magnetic field profiles, it can be stated that for field-frequencies of up to two field cycles per second heat can be efficiently transferred from the core to the outside of the jacket. In addition, intense numerical simulations of the temperature change of the core and jacket were performed by varying different parameters, such as frequency, heat capacity, thermal conductivity and interface resistance in order to shed light on their impact on ΔTeff at the outside of the jacket in comparison to ΔTad provided by the core.

Loading...
Thumbnail Image
Item

Evaluation of the effective temperature change in Gd-based composite wires assessed by static and pulsed-field magnetic measurements

2021, Beyer, L., Weise, B., Freudenberger, J., Hufenbach, J.K., Gottschall, T., Krautz, M.

Gd cladded in a seamless 316L austenitic steel tube has been swaged into wires by the powder-in-tube (PIT) technology, resulting in an outer diameter of 1 mm, a wall thickness of approx. 100 µm and a filling factor of around 62 vol%. Such wires provide an advantageous geometry for heat exchangers and have the benefit to protect the Gadolinium, i.e. from corrosion when being in contact with a heat transfer fluid. The magnetocaloric composite has been studied by static and pulsed magnetic-field measurements in order to evaluate the performance of Gd as a core material. By the analysis of magnetization and heat capacity data, the influences of deformation-induced defects on Gadolinium are presented. The subsequent heat treatment at 773 K for 1 h in Ar atmosphere allowed restoring the magnetic properties of the wire after deformation. Data of the pulsed magnetic-field measurements on the Gd-filled PIT-wires and a Gd–core separated from the jacket are presented, with an achievable temperature change of 1.2 K for the wire and 5.2 K for the Gd in 2 T, respectively. A comparison to previously studied La(Fe, Co, Si)13-filled composite wires is included. It indicates that performance losses due to the passive matrix material cannot be overcome only by an increased adiabatic temperature change of the core material, but instead the wire components need to be chosen regarding an optimized heat capacity ratio, as well.

Loading...
Thumbnail Image
Item

Splitting of the magnetic monopole pair-creation energy in spin ice

2020, Hornung, J., Gottschall, T., Opherden, L., Antlauf, M., Schwarz, M., Kroke, E., Herrmannsdörfer, T., Wosnitza, J.

The thermodynamics in spin-ice systems are governed by emergent magnetic monopole excitations and, until now, the creation of a pair of these topological defects was associated with one specific pair-creation energy. Here, we show that the electric dipole moments inherent to the magnetic monopoles lift the degeneracy of their creation process and lead to a splitting of the pair-creation energy. We consider this finding to extend the model of magnetic relaxation in spin-ice systems and show that an electric dipole interaction in the theoretically estimated order of magnitude leads to a splitting which can explain the controversially discussed discrepancies between the measured temperature dependence of the magnetic relaxation times and previous theory. By applying our extended model to experimental data of, various spin-ice systems, we show its universal applicability and determine a dependence of the electric dipole interaction on the system parameters, which is in accordance with the theoretical model of electric dipole formation. © 2020 The Author(s). Published by IOP Publishing Ltd.