Search Results

Now showing 1 - 3 of 3
  • Item
    Light-responsive paper strips as CO-releasing material with a colourimetric response
    (Cambridge : RSC Publishing, 2017) Reddy G., Upendar; Liu, Jingjing; Hoffmann, Patrick; Steinmetzer, Johannes; Görls, Helmar; Kupfer, Stephan; Askes, Sven H. C.; Neugebauer, Ute; Gräfe, Stefanie; Schiller, Alexander
    Carbon monoxide (CO) is known for its multifaceted role in human physiology, and molecules that release CO in a controlled way have been proposed as therapeutic drugs. In this work, a light-responsive CO-releasing molecule (CORM-Dabsyl) showed a strong colourimetric response upon photochemical CO-release, owing to the tight conjugation of a Mn(i) tricarbonyl centre to a dabsyl chromophoric ligand (L). Whereas the complex was very stable in the dark in nitrogen-purged aqueous media, CO-release was effectively triggered using 405 nm irradiation. CORM-Dabsyl, L and the inactive product iCORM-Dabsyl have been investigated by DFT and TD-DFT calculations. Only mild toxicity of CORM-Dabsyl was observed against LX-2 and HepaRG® human cell lines (IC50 ∼ 30 μM). Finally, to develop a CO storage and release material that is readily applicable to therapeutic situations, CORM-Dabsyl was loaded on low-cost and easily disposable paper strips, from which the light triggered CO-release was conveniently visible with the naked eye.
  • Item
    Photophysics of Anionic Bis(4H-imidazolato)CuI Complexes
    (Weinheim : Wiley-VCH, 2022) Seidler, Bianca; Tran, Jens H.; Hniopek, Julian; Traber, Philipp; Görls, Helmar; Gräfe, Stefanie; Schmitt, Michael; Popp, Jürgen; Schulz, Martin; Dietzek‐Ivanšić, Benjamin
    In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.
  • Item
    An artificial photosynthetic system for photoaccumulation of two electrons on a fused dipyridophenazine (dppz)-pyridoquinolinone ligand
    (Cambridge : RSC Publishing, 2018) Lefebvre, Jean-François; Schindler, Julian; Traber, Philipp; Zhang, Ying; Kupfer, Stephan; Gräfe, Stefanie; Baussanne, Isabelle; Demeunynck, Martine; Mouesca, Jean-Marie; Gambarelli, Serge; Artero, Vincent; Dietzek, Benjamin; Chavarot-Kerlidou, Murielle
    Increasing the efficiency of molecular artificial photosynthetic systems is mandatory for the construction of functional devices for solar fuel production. Decoupling the light-induced charge separation steps from the catalytic process is a promising strategy, which can be achieved thanks to the introduction of suitable electron relay units performing charge accumulation. We report here on a novel ruthenium tris-diimine complex able to temporarily store two electrons on a fused dipyridophenazine-pyridoquinolinone π-extended ligand upon visible-light irradiation in the presence of a sacrificial electron donor. Full characterization of this compound and of its singly and doubly reduced derivatives thanks to resonance Raman, EPR and (TD)DFT studies allowed us to localize the two electron-storage sites and to relate charge photoaccumulation with proton-coupled electron transfer processes.