Search Results

Now showing 1 - 3 of 3
  • Item
    Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns
    (Katlenburg-Lindau : EGU, 2018) Bucci, Silvia; Cristofanelli, Paolo; Decesari, Stefano; Marinoni, Angela; Sandrini, Silvia; Größ, Johannes; Wiedensohler, Alfred; Di Marco, Chiara F.; Nemitz, Eiko; Cairo, Francesco; Di Liberto, Luca; Fierli, Federico
    Studying the vertical distribution of aerosol particle physical and chemical properties in the troposphere is essential to understand the relative importance of local emission processes vs. long-range transport for column-integrated aerosol properties (e.g. the aerosol optical depth, AOD, affecting regional climate) as well as for the aerosol burden and its impacts on air quality at the ground. The main objective of this paper is to investigate the transport of desert dust in the middle troposphere and its intrusion into the planetary boundary layer (PBL) over the Po Valley (Italy), a region considered one of the greatest European pollution hotspots for the frequency that particulate matter (PM) limit values are exceeded. Events of mineral aerosol uplift from local (soil) sources and phenomena of hygroscopic growth at the ground are also investigated, possibly affecting the PM concentration in the region as well. During the PEGASOS 2012 field campaign, an integrated observing-modelling system was set up based on near-surface measurements (particle concentration and chemistry), vertical profiling (backscatter coefficient profiles from lidar and radiosoundings) and Lagrangian air mass transport simulations by FLEXPART model. Measurements were taken at the San Pietro Capofiume supersite (44°39′ĝ€N, 11°37′ĝ€E; 11ĝ€mĝ€a.s.l.), located in a rural area relatively close to some major urban and industrial emissive areas in the Po Valley. Mt. Cimone (44°12′ĝ€N, 10°42′ĝ€E; 2165ĝ€mĝ€a.s.l.) WMO/GAW station observations are also included in the study to characterize regional-scale variability. Results show that, in the Po Valley, aerosol is detected mainly below 2000ĝ€mĝ€a.s.l. with a prevalent occurrence of non-depolarizing particles ( > 50ĝ€% throughout the campaign) and a vertical distribution modulated by the PBL daily evolution. Two intense events of mineral dust transport from northern Africa (19-21 and 29 June to 2 July) are observed, with layers advected mainly above 2000ĝ€m, but subsequently sinking and mixing in the PBL. As a consequence, a non-negligible occurrence of mineral dust is observed close to the ground ( ĝ1/4 7ĝ€% of occurrence during a 1-month campaign). The observations unambiguously show Saharan dust layers intruding the Po Valley mixing layer and directly affecting the aerosol concentrations near the surface. Finally, lidar observations also indicate strong variability in aerosol on shorter timescales (hourly). Firstly, these highlight events of hygroscopic growth of anthropogenic aerosol, visible as shallow layers of low depolarization near the ground. Such events are identified during early morning hours at high relative humidity (RH) conditions (RHĝ€ > 80ĝ€%). The process is observed concurrently with high PM1 nitrate concentration (up to 15ĝ€μgĝ€cmĝ'3) and hence mainly explicable by deliquescence of fine anthropogenic particles, and during mineral dust intrusion episodes, when water condensation on dust particles could instead represent the dominant contribution. Secondly, lidar images show frequent events (mean daily occurrence of ĝ1/4 ĝ€22ĝ€% during the whole campaign) of rapid uplift of mineral depolarizing particles in afternoon-evening hours up to 2000ĝ€mĝ€a.s.l. height. The origin of such particles cannot be directly related to long-range transport events, being instead likely linked to processes of soil particle resuspension from agricultural lands.
  • Item
    Vertical profiling of aerosol hygroscopic properties in the planetary boundary layer during the PEGASOS campaigns
    (München : European Geopyhsical Union, 2016) Rosati, Bernadette; Gysel, Martin; Rubach, Florian; Mentel, Thomas F.; Goger, Brigitta; Poulain, Laurent; Schlag, Patrick; Miettinen, Pasi; Pajunoja, Aki; Virtanen, Annele; Baltink, Henk Klein; Henzing, J.S. Bas; Größ, Johannes; Gobbi, Gian Paolo; Wiedensohler, Alfred; Kiendler-Scharr, Astrid; Decesari, Stefano; Facchini, Maria Cristina; Weingartner, Ernest; Baltensperger, Urs
    Vertical profiles of the aerosol particles hygroscopic properties, their mixing state as well as chemical composition were measured above northern Italy and the Netherlands. An aerosol mass spectrometer (AMS; for chemical composition) and a white-light humidified optical particle spectrometer (WHOPS; for hygroscopic growth) were deployed on a Zeppelin NT airship within the PEGASOS project. This allowed one to investigate the development of the different layers within the planetary boundary layer (PBL), providing a unique in situ data set for airborne aerosol particles properties in the first kilometre of the atmosphere. Profiles measured during the morning hours on 20 June 2012 in the Po Valley, Italy, showed an increased nitrate fraction at  ∼  100 m above ground level (a.g.l.) coupled with enhanced hygroscopic growth compared to  ∼  700 m a. g. l. This result was derived from both measurements of the aerosol composition and direct measurements of the hygroscopicity, yielding hygroscopicity parameters (κ) of 0.34  ±  0.12 and 0.19  ±  0.07 for 500 nm particles, at  ∼  100 and  ∼  700 m a. g. l., respectively. The difference is attributed to the structure of the PBL at this time of day which featured several independent sub-layers with different types of aerosols. Later in the day the vertical structures disappeared due to the mixing of the layers and similar aerosol particle properties were found at all probed altitudes (mean κ ≈ 0.18  ±  0.07). The aerosol properties observed at the lowest flight level (100 m a. g. l.) were consistent with parallel measurements at a ground site, both in the morning and afternoon. Overall, the aerosol particles were found to be externally mixed, with a prevailing hygroscopic fraction. The flights near Cabauw in the Netherlands in the fully mixed PBL did not feature altitude-dependent characteristics. Particles were also externally mixed and had an even larger hygroscopic fraction compared to the results in Italy. The mean κ from direct measurements was 0.28 ±  0.10, thus considerably higher than κ values measured in Italy in the fully mixed PBL.
  • Item
    Variation of CCN activity during new particle formation events in the North China Plain
    (München : European Geopyhsical Union, 2016) Ma, Nan; Zhao, Chunsheng; Tao, Jiangchuan; Wu, Zhijun; Kecorius, Simonas; Wang, Zhibin; Größ, Johannes; Liu, Hongjian; Bian, Yuxuan; Kuang, Ye; Teich, Monique; Spindler, Gerald; Müller, Konrad; van Pinxteren, Dominik; Herrmann, Hartmut; Hu, Min; Wiedensohler, Alfred
    The aim of this investigation was to obtain a better understanding of the variability of the cloud condensation nuclei (CCN) activity during new particle formation (NPF) events in an anthropogenically polluted atmosphere of the North China Plain (NCP). We investigated the size-resolved activation ratio as well as particle number size distribution, hygroscopicity, and volatility during a 4-week intensive field experiment in summertime at a regional atmospheric observatory in Xianghe. Interestingly, based on a case study, two types of NPF events were found, in which the newly formed particles exhibited either a higher or a lower hygroscopicity. Therefore, the CCN activity of newly formed particles in different NPF events was largely different, indicating that a simple parameterization of particle CCN activity during NPF events over the NCP might lead to poor estimates of CCN number concentration (NCCN). For a more accurate estimation of the potential NCCN during NPF events, the variation of CCN activity has to be taken into account. Considering that a fixed activation ratio curve or critical diameter are usually used to calculate NCCN, the influence of the variation of particle CCN activity on the calculation of NCCN during NPF events was evaluated based on the two parameterizations. It was found that NCCN might be underestimated by up to 30 % if a single activation ratio curve (representative of the region and season) were to be used in the calculation; and might be underestimated by up to 50 % if a fixed critical diameter (representative of the region and season) were used. Therefore, we suggest not using a fixed critical diameter in the prediction of NCCN in NPF. If real-time CCN activity data are not available, using a proper fixed activation ratio curve can be an alternative but compromised choice.