Search Results

Now showing 1 - 2 of 2
  • Item
    Rolled-up magnetic microdrillers: Towards remotely controlled minimally invasive surgery
    (Cambridge [u.a.] : Royal Society of Chemistry, 2013) Xi, W.; Solovev, A.A.; Ananth, A.N.; Gracias, D.H.; Sanchez, S.; Schmidt, O.G.
    Self-folded magnetic microtools with sharp ends are directed at enabling drilling and related incision operations of tissues, ex vivo, in a fluid with a viscosity similar to that of blood. These microtools change their rotation from a horizontal to a vertical one when they are immersed into a rotational magnetic field. Novel self-assembly paradigms with magnetic materials can enable the creation of remotely controlled and mass-produced tools for potential applications in minimally invasive surgery.
  • Item
    Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies
    (Washington, DC : American Chemical Society, 2014) Xi, W.; Schmidt, C.K.; Sanchez, S.; Gracias, D.H.; Carazo-Salas, R.E.; Jackson, S.P.; Schmidt, O.G.
    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.