Search Results

Now showing 1 - 2 of 2
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    Suppression of nematicity by tensile strain in multilayer FeSe/SrTiO3 films
    (College Park, MD : APS, 2023) Lou, Rui; Suvorov, Oleksandr; Grafe, Hans-Joachim; Kuibarov, Andrii; Krivenkov, Maxim; Rader, Oliver; Büchner, Bernd; Borisenko, Sergey; Fedorov, Alexander
    The nematicity in multilayer FeSe/SrTiO3 films has been previously suggested to be enhanced with decreasing film thickness. Motivated by this, there have been many discussions about the competing relation between nematicity and superconductivity. However, the criterion for determining the nematicity strength in FeSe remains highly debated. The understanding of nematicity as well as its relation to superconductivity in FeSe films is therefore still controversial. Here, we fabricate multilayer FeSe/SrTiO3 films using molecular beam epitaxy and study the nematic properties by combining angle-resolved photoemission spectroscopy, Se77 nuclear magnetic resonance, and scanning tunneling microscopy experiments. We unambiguously demonstrate that, near the interface, the nematic order is suppressed by the SrTiO3-induced tensile strain; in the bulk region further away from the interface, the strength of nematicity recovers to the bulk value. Our results not only solve the recent controversy about the nematicity in multilayer FeSe films, but also offer valuable insights into the relationship between nematicity and superconductivity.