Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets

2021, Payne, Antony J., Nowicki, Sophie, Abe‐Ouchi, Ayako, Agosta, Cécile, Alexander, Patrick, Albrecht, Torsten, Asay‐Davis, Xylar, Aschwanden, Andy, Barthel, Alice, Bracegirdle, Thomas J., Calov, Reinhard, Chambers, Christopher, Choi, Youngmin, Cullather, Richard, Cuzzone, Joshua, Dumas, Christophe, Edwards, Tamsin L., Felikson, Denis, Fettweis, Xavier, Galton‐Fenzi, Benjamin K., Goelzer, Heiko, Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Munneke, Peter Kuipers, Larour, Eric, Le clec'h, Sebastien, Lee, Victoria, Leguy, Gunter, Lipscomb, William H., Little, Christopher M., Lowry, Daniel P., Morlighem, Mathieu, Nias, Isabel, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurélien, Reese, Ronja, Rückamp, Martin, Schlegel, Nicole‐Jeanne, Seroussi, Hélène, Shepherd, Andrew, Simon, Erika, Slater, Donald, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Tarasov, Lev, Trusel, Luke D., Van Breedam, Jonas, Wal, Roderik, Broeke, Michiel, Winkelmann, Ricarda, Zhao, Chen, Zhang, Tong, Zwinger, Thomas

Projections of the sea level contribution from the Greenland and Antarctic ice sheets (GrIS and AIS) rely on atmospheric and oceanic drivers obtained from climate models. The Earth System Models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6) generally project greater future warming compared with the previous Coupled Model Intercomparison Project phase 5 (CMIP5) effort. Here we use four CMIP6 models and a selection of CMIP5 models to force multiple ice sheet models as part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We find that the projected sea level contribution at 2100 from the ice sheet model ensemble under the CMIP6 scenarios falls within the CMIP5 range for the Antarctic ice sheet but is significantly increased for Greenland. Warmer atmosphere in CMIP6 models results in higher Greenland mass loss due to surface melt. For Antarctica, CMIP6 forcing is similar to CMIP5 and mass gain from increased snowfall counteracts increased loss due to ocean warming.

Loading...
Thumbnail Image
Item

initMIP-Antarctica: an ice sheet model initialization experiment of ISMIP6

2019, Seroussi, Hélène, Nowicki, Sophie, Simon, Erika, Abe-Ouchi, Ayako, Albrecht, Torsten, Brondex, Julien, Cornford, Stephen, Dumas, Christophe, Gillet-Chaulet, Fabien, Goelzer, Heiko, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Kleiner, Thomas, Larour, Eric, Leguy, Gunter, Lipscomb, William H., Lowry, Daniel, Mengel, Matthias, Morlighem, Mathieu, Pattyn, Frank, Payne, Anthony J., Pollard, David, Price, Stephen F., Quiquet, Aurélien, Reerink, Thomas J., Reese, Ronja, Rodehacke, Christian B., Schlegel, Nicole-Jeanne, Shepherd, Andrew, Sun, Sainan, Sutter, Johannes, Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda, Zhang, Tong

Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.

Loading...
Thumbnail Image
Item

ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century

2020, Seroussi, Hélène, Nowicki, Sophie, Payne, Antony J., Goelzer, Heiko, Lipscomb, William H., Abe-Ouchi, Ayako, Agosta, Cécile, Albrecht, Torsten, Asay-Davis, Xylar, Barthel, Alice, Calov, Reinhard, Cullather, Richard, Dumas, Christophe, Galton-Fenzi, Benjamin K., Gladstone, Rupert, Golledge, Nicholas R., Gregory, Jonathan M., Greve, Ralf, Hattermann, Tore, Hoffman, Matthew J., Humbert, Angelika, Huybrechts, Philippe, Jourdain, Nicolas C., Kleiner, Thomas, Larour, Eric, Leguy, Gunter R., Lowry, Daniel P., Little, Chistopher M., Morlighem, Mathieu, Pattyn, Frank, Pelle, Tyler, Price, Stephen F., Quiquet, Aurélien, Reese, Ronja, Schlegel, Nicole-Jeanne, Shepherd, Andrew, Simon, Erika, Smith, Robin S., Straneo, Fiammetta, Sun, Sainan, Trusel, Luke D., Van Breedam, Jonas, van de Wal, Roderik S. W., Winkelmann, Ricarda, Zhao, Chen, Zhang, Tong, Zwinger, Thomas

Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015-2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between 7:8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to presentday conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between 6:1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica. © Author(s) 2020.