Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100

2021, Keeble, James, Hassler, Birgit, Banerjee, Antara, Checa-Garcia, Ramiro, Chiodo, Gabriel, Davis, Sean, Eyring, Veronika, Griffiths, Paul T., Morgenstern, Olaf, Nowack, Peer, Zeng, Guang, Zhang, Jiankai, Bodeker, Greg, Burrows, Susannah, Cameron-Smith, Philip, Cugnet, David, Danek, Christopher, Deushi, Makoto, Horowitz, Larry W., Kubin, Anne, Li, Lijuan, Lohmann, Gerrit, Michou, Martine, Mills, Michael J., Nabat, Pierre, Olivié, Dirk, Park, Sungsu, Seland, Øyvind, Stoll, Jens, Wieners, Karl-Hermann, Wu, Tongwen

Stratospheric ozone and water vapour are key components of the Earth system, and past and future changes to both have important impacts on global and regional climate. Here, we evaluate long-term changes in these species from the pre-industrial period (1850) to the end of the 21st century in Coupled Model Intercomparison Project phase 6 (CMIP6) models under a range of future emissions scenarios. There is good agreement between the CMIP multi-model mean and observations for total column ozone (TCO), although there is substantial variation between the individual CMIP6 models. For the CMIP6 multi-model mean, global mean TCO has increased from ∼300 DU in 1850 to ∼ 305 DU in 1960, before rapidly declining in the 1970s and 1980s following the use and emission of halogenated ozone-depleting substances (ODSs). TCO is projected to return to 1960s values by the middle of the 21st century under the SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0, and SSP5-8.5 scenarios, and under the SSP3-7.0 and SSP5-8.5 scenarios TCO values are projected to be ∼ 10 DU higher than the 1960s values by 2100. However, under the SSP1-1.9 and SSP1-1.6 scenarios, TCO is not projected to return to the 1960s values despite reductions in halogenated ODSs due to decreases in tropospheric ozone mixing ratios. This global pattern is similar to regional patterns, except in the tropics where TCO under most scenarios is not projected to return to 1960s values, either through reductions in tropospheric ozone under SSP1-1.9 and SSP1-2.6, or through reductions in lower stratospheric ozone resulting from an acceleration of the Brewer-Dobson circulation under other Shared Socioeconomic Pathways (SSPs). In contrast to TCO, there is poorer agreement between the CMIP6 multi-model mean and observed lower stratospheric water vapour mixing ratios, with the CMIP6 multi-model mean underestimating observed water vapour mixing ratios by ∼ 0.5 ppmv at 70 hPa. CMIP6 multi-model mean stratospheric water vapour mixing ratios in the tropical lower stratosphere have increased by ∼ 0.5 ppmv from the pre-industrial to the present-day period and are projected to increase further by the end of the 21st century. The largest increases (∼ 2 ppmv) are simulated under the future scenarios with the highest assumed forcing pathway (e.g. SSP5-8.5). Tropical lower stratospheric water vapour, and to a lesser extent TCO, shows large variations following explosive volcanic eruptions. © Author(s) 2021.

Loading...
Thumbnail Image
Item

Opinion: The germicidal effect of ambient air (open-air factor) revisited

2021, Cox, R. Anthony, Ammann, Markus, Crowley, John N., Griffiths, Paul T., Herrmann, Hartmut, Hoffmann, Erik H., Jenkin, Michael E., McNeill, V. Faye, Mellouki, Abdelwahid, Penkett, Christopher J., Tilgner, Andreas, Wallington, Timothy J.

The term open-air factor (OAF) was coined following microbiological research in the 1960s and 1970s which established that rural air had powerful germicidal properties and attributed this to Criegee intermediates formed in the reaction of ozone with alkenes. We have re-evaluated those early experiments applying the current state of knowledge of ozone-alkene reactions. Contrary to previous speculation, neither Criegee intermediates nor the HO radicals formed in their decomposition are directly responsible for the germicidal activity attributed to the OAF. We identify other potential candidates, which are formed in ozone-alkene reactions and have known (and likely) germicidal properties, but the compounds responsible for the OAF remain a mystery. There has been very little research into the OAF since the 1970s, and this effect seems to have been largely forgotten. In this opinion piece we remind the community of the germicidal open-air factor. Given the current global pandemic spread by an airborne pathogen, understanding the natural germicidal effects of ambient air, solving the mystery of the open-air factor and determining how this effect can be used to improve human welfare should be a high priority for the atmospheric science community. © 2021 The Author(s).